

Cost Concepts for Decision Making

A relevant cost is a cost that differs between alternatives.

Identifying Relevant Costs

An avoidable cost is a cost that can be eliminated, in whole or in part, by choosing one alternative over another. Avoidable costs are relevant costs. Unavoidable costs are irrelevant costs.

Two broad categories of costs are never relevant in any decision. They include:
o Sunk costs.
© Future costs that do not differ between the alternatives.

Relevant Cost Analysis: A Two-Step

 ProcessStep 1 Eliminate costs and benefits that do not differ between alternatives.

Step 2 Use the remaining costs and benefits that differ between alternatives in making the decision. The costs that remain are the differential, or avoidable, costs.

Identifying Relevant Costs

Cynthia, a Malaysian student studying in Penang, is considering visiting her friend in Kuala Lumpur. She can drive or take the budget airline. By car, it is 230 miles to her friend's apartment. She is trying to decide which alternative is less expensive and has gathered the following information:

Identifying Relevant Costs

		Annual Cost of Fixed Items		Cost per Mile	
1	Annual straight-line depreciation on car	\$	2,800	\$	0.280
2	Cost of gasoline				0.100
3	Annual cost of auto insurance and license		1,380		0.138
4	Maintenance and repairs				0.065
5	Parking fees at school		360		0.036
6	Total average cost			\$	0.619

Some Additional Information			
8	Reduction in resale value of car per mile of wear	$\$$	0.026
8	Round-tip airfare	$\$$	104
9	Benefits of relaxing on plane trip		$? ? ? ?$
10	Cost of putting dog in kennel while gone	$\$$	40
11	Benefit of having car in Kuala Lumpur	$? ? ? ?$	
12	Hassle of parking car in Kuala Lumpur		$? ? ? ?$
13	Per day cost of parking car in Kuala Lumpur	$\$$	25

Garrison, Noreen, Brewer, Cheng \& Yuen

Identifying Relevant Costs

Which costs and benefits are relevant in Cynthia's decision?

The cost of the car is a sunk cost and is not relevant to the current decision.

The annual cost of insurance is not relevant. It will remain the same if she drives or takes the plane.

However, the cost of gasoline is clearly relevant if she decides to drive. If she takes the plane, the cost would not be incurred, so it varies depending on the decision.

Identifying Relevant Costs

Which costs and benefits are relevant in Cynthia's decision?

The cost of maintenance and repairs is relevant. In the long-run these costs depend upon miles driven.

The monthly school parking fee is not relevant because it must be paid if Cynthia drives or takes the plane.

At this point, we can see that some of the average cost of $\$ 0.619$ per mile are relevant and others are not.
© 2015 McGraw-Hill Education

Identifying Relevant Costs

Which costs and benefits are relevant in Cynthia's decision?

The decline in resale value due to additional miles is a relevant cost.
\qquad
Relaxing on the plane is relevant even though it is difficult to assign a dollar value to the benefit.

The round-trip airfare is clearly relevant. If she drives the cost can be avoided.

The kennel cost is not relevant because
Cynthia will incur the cost if she drives or takes the plane.

Identifying Relevant Costs

Which costs and benefits are relevant in Cynthia's decision?

The cost of parking in Kuala Lumpur is relevant because it can be avoided if she takes the plane.

The benefits of having a car in Kuala Lumpur and the problems of finding a parking space are both relevant but are difficult to assign a dollar amount.

Identifying Relevant Costs

From a financial standpoint, Cynthia would be better off taking the plane to visit her friend. Some of the non-financial factor may influence her final decision.

Relevant Financial Cost of Driving	
Gasoline (460 @ \$0.100 per mile)	$\$ 46.00$
Maintenance (460 @ \$0.065 per mile)	29.90
Reduction in resale (460 @ \$0.026 per mile)	11.96
Parking in Kuala Lumpur (2 days @ \$25 per day)	50.00
Total	137.86

Relevant Financial Cost of Taking the Plane	
Round-trip ticket	$\underline{\$ 104.00}$

Total and Differential Cost Approaches

The management of a company is considering a new labor saving machine that rents for $\$ 3,000$ per year. Data about the company's annual sales and costs with and without the new machine are:

Total and Differential Cost Approaches

As you can see, the only costs that differ between the alternatives are the direct labor costs savings and the increase in fixed rental costs.

Total and Differential Cost Approaches

Using the differential approach is desirable for two reasons:

1. Only rarely will enough information be available to prepare detailed income statements for both alternatives.
2. Mingling irrelevant costs with relevant costs may cause confusion and distract attention away from the information that is really critical.

Learning Objective 2
Prepare an analysis showing whether a product line or other business segment should be dropped or retained.

Adding/Dropping Segments

One of the most important decisions managers make is whether to add or drop a business segment. Ultimately, a decision to drop an old segment or add a new one is going to hinge primarily on the impact the decision will have on net operating income.

To assess this impact, it is necessary to carefully analyze the costs.

Adding/Dropping Segments

Due to the declining popularity of digital watches, Lovell Company's digital watch line has not reported a profit for several years. Lovell is considering discontinuing this product line.

A Contribution Margin Approach

Adding/Dropping Segments

Segment Income Statement Digital Watches

Sales		\$	500,000
Less: variable expenses			
Variable manufacturing costs	\$ 120,000	200,000	
Variable shipping costs	5,000		
Commissions	75,000		
Contribution margin		\$	300,000
Less: fixed expenses			
General factory overhead	\$ 60,000		
Salary of line manager	90,000		
Depreciation of equipment	50,000		
Advertising - direct	100,000		
Rent - factory space	70,000		
General admin. expenses	30,000	400,000	
Net operating loss		\$	$(100,000)$

Adding/Dropping Segments

Segment Income Statement Digital Watches

Sales \$ 500,000
An investigation has revealed that the fixed general factory overhead and fixed general administrative expenses will not be affected by dropping the digital watch line. The fixed general factory overhead and general administrative expenses assigned to this product would be reallocated to other product lines.

Advertising - alrect	100,000	
Rent - factory space	70,000	
General admin. expenses	30,000	
Net operating loss		$\underline{\$(100,000)}$

Adding/Dropping Segments

Segment Income Statement

 Digital WatchesSales

\$ 500,000

Less: fixed expenses
General factory overhead
\$ 60,000
Salary of line man non
Depreciation of equ Should Lovell retain or drop
Advertising - direct
Rent - factory spac
the digital watch segment?
General admin. expenses
Net operating loss
30,000
$\longrightarrow \quad \frac{400,000}{\$(100,000)}$

A Contribution Margin Approach

Comparative Income Approach

The Lovell solution can also be obtained by preparing comparative income statements showing results with and without the digital watch segment.

Let's look at this second approach.

Beware of Allocated Fixed Costs

The Make or Buy Decision

When a company is involved in more than one activity in the entire value chain, it is vertically integrated. A decision to carry out one of the activities in the value chain internally, rather than to buy externally from a supplier is called a "make or buy" decision.

Vertical Integration- Advantages

Vertical Integration- Disadvantage
Companies may fail to take advantage of suppliers who can create economies of scale advantage by pooling demand from numerous companies.

While the economics of scale factor can be appealing, a company must be careful to retain control over activities that are essential to maintaining its competitive position.

The Make or Buy Decision: An Example

- Essex Company manufactures part 4A that is used in one of its products.
- The unit product cost of this part is:

© 2015 McGraw-Hill Education

The Make or Buy Decision

- The special equipment used to manufacture part 4A has no resale value.
- The total amount of general factory overhead, which is allocated on the basis of direct labor hours, would be unaffected by this decision.
- The $\$ 30$ unit product cost is based on 20,000 parts produced each year.
- An outside supplier has offered to provide the 20,000 parts at a cost of $\$ 25$ per part.

Should we accept the supplier's offer?

The avoidable costs associated with making part 4A include direct materials, direct labor, variable overhead, and the supervisor's salary.

[^0]

Should we make or buy part 4A? Given that the total avoidable costs are less than the cost of buying the part, Essex should continue to make the part.

Opportunity Cost

An opportunity cost is the benefit that is foregone as a result of pursuing some course of action.
Opportunity costs are not actual cash outlays and are not recorded in the formal accounts of an organization.

How would this concept potentially relate to the
 Essex Company?

Value to Business (Deprival Value)

Deprival value
= Lower of

Replacement Cost (RC) Recoverable Value (RV)
$=$ Higher of

Net Realizable Value (NRV)
Value in Use (VIU)
Economic Value (EV) or Present Value (PV)

Opportunity Costs: An Example

Fed Co. Ltd. is considering the publication of a limited edition of a book, bound in a special grade of leather.

The leather was bought some year ago for $\$ 500$.

- The current price for the same quantity of leather would be $\$ 1,200$
Fed Co. Ltd. Can use the leather to cover desk furnishings, in replacement for other material which would cost $\$ 400$
Fed Co. Ltd. can sell it with a net disposal proceeds of \$300

How much should the leather be valued for the use of book bounding?

Opportunity Cost: Deprival Value Approach

Key Terms and Concepts

A special order is a one-time order that is not considered part of the company's normal ongoing business.

When analyzing a special order, only the incremental costs and benefits are relevant.

Since the existing fixed manufacturing overhead costs would not be affected by the order, they are not relevant.

Special Orders

> Jet Corporation. makes a single product whose normal selling price is $\$ 20$ per unit.
> A foreign distributor offers to purchase 3,000 units for \$10 per unit.
> This is a one-time order that would not affect the company's regular business.
> Annual capacity is 10,000 units, but Jet Corporation is currently producing and selling only 5,000 units.

Should Jet accept the offer?

Special Orders

Note: This answer assumes that the fixed costs are unavoidable and that variable marketing costs must be incurred on the special order.

[^1]
Quick Check

Northern Optical ordinarily sells the X-lens for \$50. The variable production cost is $\$ 10$, the fixed production cost is $\$ 18$ per unit, and the variable selling cost is $\$ 1$. A customer has requested a special order for 10,000 units of the X-lens to be imprinted with the customer's logo. This special order would not involve any selling costs, but Northern Optical would have to purchase an imprinting machine for \$50,000.
(see the next page)

Quick Check \checkmark

What is the rock bottom minimum price below which Northern Optical should not go in its negotiations with the customer? In other words, below what price would Northern Optical actually be losing money on the sale? There is ample idle capacity to fulfill the order and the imprinting machine has no further use after this order.
a. $\$ 50$
b. $\$ 10$
c. $\$ 15$
d. $\$ 29$

Learning Objective 5

Key Terms and Concepts

When a limited resource of some type restricts the
company's ability to satisfy demand, the company is said to have a constraint.

The machine or process that is limiting overall output is called the bottleneck - it is the constraint.

Utilization of a Constrained Resource

Fixed costs are usually unaffected in these situations, so the product mix that maximizes the company's total contribution margin should ordinarily be selected.

- A company should not necessarily promote those products that have the highest unit contribution margins.
Rather, total contribution margin will be maximized by promoting those products or accepting those orders that provide the highest contribution margin in relation to the constraining resource.

Utilization of a Constrained Resource: An Example

Ensign Company produces two products and selected data are shown below:

	Product	
	1	2
Selling price per unit	\$ 60	\$ 50
Less variable expenses per unit	36	35
Contribution margin per unit	\$ 24	\$ 15
Current demand per week (units)	2,000	2,200
Contribution margin ratio	40\%	30\%
Processing time required on machine A1 per unit	1.00	0.50

Utilization of a Constrained Resource: An Example

- Machine A1 is the constrained resource and is being used at 100% of its capacity.
- There is excess capacity on all other machines.
Machine A1 has a capacity of 2,400 minutes per week.

Should Ensign focus its efforts on Product 1 or Product 2?

Quick Check \checkmark

How many units of each product can be processed through Machine A1 in one minute?

	Product 1		Product 2
a.	1 unit		0.5 unit
b. 1 unit		2.0 units	
c. 2 units		1.0 unit	
d. 2 units		0.5 unit	

Quick Check \checkmark

How many units of each product can be processed through Machine A1 in one minute?

Product 1
b. 1 unit
2.0 units

Just checking to make sure you are with us.

Quick Check \checkmark

What generates more profit for the company, using one minute of machine AI to process Product I or using one minute of machine AI to process Product 2?
a. Product I
b. Product 2
c. They both would generate the same profit.
d. Cannot be determined.

Quick Check \checkmark

With one minute of machine A1, we could make 1 unit of Product 1 , with a contribution margin of $\$ 24$, or 2 units of Product 2 , each with a contribution margin of $\$ 15$.
$2 \times \$ 15=\$ 30>\$ 24$
(b) Product 2
c. They both would generate the same profit.
d. Cannot be determined.

2015 McGraw-Hill Education
Garrison, Noreen, Brewer, Cheng \& Yuen

Utilization of a Constrained Resource

The key is the contribution margin per unit of the constrained resource.

Ensign should emphasize Product 2 because it generates a contribution margin of $\$ 30$ per minute of the constrained resource relative to \$24 per minute for Product 1.

Utilization of a Constrained Resource

The key is the contribution margin per unit of the constrained resource.

Ensign can maximize its contribution margin by first producing Product 2 to meet customer demand and then using any remaining capacity to produce Product 1. The calculations would be performed as follows.

Utilization of a Constrained Resource

Let's see how this plan would work.
Alloting Our Constrained Resource (Machine A1)

Weekly demand for Product 2
Time required per unit

2,200 units
$\times \quad 0.50$ min.
$1,100 \mathrm{~min}$.

Total time required to make Product 2
\qquad

Utilization of a Constrained Resource

Let's see how this plan would work.

Utilization of a Constrained Resource
 Let's see how this plan would work.

Alloting Our Constrained Resource (Machine A1)

Utilization of a Constrained Resource

According to the plan, we will produce 2,200 units of Product 2 and 1,300 of Product 1. Our contribution margin looks like this.

The total contribution margin for Ensign is \$64,200.

Quick Check

Colonial Heritage makes reproduction colonial furniture from select hardwoods.

	Chairs	Tables
Selling price per unit	$\$ 80$	$\$ 400$
Variable cost per unit	$\$ 30$	$\$ 200$
Board feet per unit	2	10
Monthly demand	600	100

The company's supplier of hardwood will only be able to supply 2,000 board feet this month. Is this enough hardwood to satisfy demand?
a. Yes
b. No

Quick Check \checkmark

Colonial Heritage makes reproduction colonial furniture from select hardwoods.

	Chairs	Tables
Selling price per unit	$\$ 80$	$\$ 400$
Variable cost per unit	$\$ 30$	$\$ 200$
Board feet per unit	2	10
Monthly demand	600	100

The company's supplier of hardwood will only be able to supply 2,000 board feet this month. Is this enough hardwood to satisfy demand?
b. No
$(2 \times 600)+(10 \times 100)=2,200>2,000$

Quick Check \checkmark

	Chairs	Tables
Selling price per unit	$\$ 80$	$\$ 400$
Variable cost per unit	$\$ 30$	$\$ 200$
Board feet per unit	2	10
Monthly demand	600	100

The company's supplier of hardwood will only be able to supply 2,000 board feet this month. What plan would maximize profits?
a. 500 chairs and 100 tables
b. 600 chairs and 80 tables
c. 500 chairs and 80 tables
d. $\mathbf{6 0 0}$ chairs and 100 tables

Quick Check \checkmark

As before, Colonial Heritage's supplier of hardwood will only be able to supply 2,000 board feet this month. Assume the company follows the plan we have proposed. Up to how much should Colonial Heritage be willing to pay above the usual price to obtain more hardwood?
a. $\$ 40$ per board foot
b. $\$ 25$ per board foot
c. $\$ 20$ per board foot
d. Zero

Quick Check

te hofnra Colnnial Haritano'c cunnliar af hardmennd The additional wood would be used to make tables. In this use, each board foot of additional wood will allow the company to earn an additional \$20 of contribution margin and profit.
b. $\$ 25$ per board foot
c. $\$ 20$ per board foot
d. Zero

Managing Constraints

It is often possible for a manager to increase the capacity of a bottleneck, which is called relaxing (or elevating) the constraint, in numerous ways such as:

1. Working overtime on the bottleneck.
2. Subcontracting some of the processing that would be done at the bottleneck.
3. Investing in additional machines at the bottleneck.
4. Shifting workers from non-bottleneck processes to the bottleneck.
5. Focusing business process improvement efforts on the bottleneck.
6. Reducing defective units processed through the bottleneck.

These methods and ideas are all consistent with the Theory of Constraints, which was introduced in Chapter 1.

Joint Costs

- In some industries, a number of end products are produced from a single raw material input.
- Two or more products produced from a common input are called joint products.
- The point in the manufacturing process where each joint product can be recognized as a separate product is called the split-off point.

Sell or Process Further

Joint costs are irrelevant in decisions regarding what to do with a product from the split-off point forward. Therefore, these costs should not be allocated to end products for decision-making purposes.

With respect to sell or process further decisions, it is profitable to continue processing a joint product after the split-off point so long as the incremental revenue from such processing exceeds the incremental processing costs incurred after the split-off point.

Sell or Process Further: An Example

- Sawmill, Inc. cuts logs from which unfinished lumber and sawdust are the immediate joint products.
- Unfinished lumber is sold "as is" or processed further into finished lumber.
- Sawdust can also be sold "as is" to gardening wholesalers or processed further into "prestologs."

© 2015 McGraw-Hill Education

Sell or Process Further

Data about Sawmill's joint products includes:

Sell or Process Further

Analysis of Sell or Process Further				
	Per Log			
	Lumber		Sawdust	
Sales value after further processing	\$	270	\$	50
Sales value at the split-off point		140		40
Incremental revenue		130		10
Cost of further processing Profit (loss) from further processing				

Sell or Process Further

Sell or Process Further

Analysis of Sell or Process Further

Analysis of Sell or Process Further				
	Per Log			
	Lumber		Sawdust	
Sales value after further processing	\$	270	\$	50
Sales value at the split-off point		140		40
Incremental revenue		130		10
Cost of further processing		50		20
Profit (loss) from further processing	\$	80	\$	(10)

The lumber should be processed further and the sawdust should be sold at the split-off point.

Activity-Based Costing and Relevant Costs

ABC can be used to help identify potentially relevant costs for decision-making purposes.

However, managers should exercise caution against reading more into this "traceability" than really exists.

People have a tendency to assume that if a cost is traceable to a segment, then the cost is automatically avoidable, which is untrue. Before making a decision, managers must decide which of the potentially relevant costs are actually avoidable.

Short-term decisions

Topic list	Syllahus reference
1 Identifying relevant costs	B1 (a), (b), (c)
2 Make or buy decisions	B5 (a), (b), (c)
3 Outsourcing	B5 (a), (b), (c)
4 Further processing decisions	B5 (d)
5 Shut down decisions	B5 (d)

Introduction

The concept of relevant costs has already been revisited in this study text and their use in one-off contracts was examined in the last chapter.
In this chapter we look in greater depth at relevant costs and at how they should be applied in decision-making situations.
We look at a variety of common short-run business decisions and consider how they can be dealt with using relevant costs as appropriate.

Study guide

		Intellectival level
B1	Relevant cost analysis	
(a)	Explain the concept of relevant costing	2
(b)	Identify and calculate relevant costs for specific decision situations from given data	2
(c)	Explain and apply the concept of opportunity costs	2
B5	Make-or-buy and other short-term decisions	2
(a)	Explain the issues surrounding make vs buy and outsourcing decisions	2
(b)	Calculate and compare 'make' costs with 'buy-in' costs	2
(c)	Compare in-house costs and outsource costs of completing tasks and consider other issues surrounding this decision	2
(d)	Apply relevant costing principles in situations involving shut down, one-off contracts and the further processing of joint products	2

Exam guide

The ability to recognise relevant costs and revenues is a key skill for the F5 exam and is highly examinable. Questions will be based on practical scenarios.

One of the competencies you require to fulfil performance objective 12 of the PER is the ability to prepare management information to assist in decision making. You can apply the knowledge you obtain from this section of the text to help to demonstrate this competence.

1 Identifying relevant costs

Relevant costs are future cash flows arising as a direct consequence of a decision.

- Relevant costs are future costs

- Relevant costs are cash flows
- Relevant costs are incremental costs

In this section we provide a fairly gentle introduction to the sort of thought processes that you will have to go through when you encounter a decision-making question. First some general points about machinery, labour, and particularly materials, that often catch people out.

Exam focus point

Question 1 of the December 2011 exam asked candidates to prepare a cost statement using relevant costing principles, with detailed notes to support each number included in the statement.
The examiner noted that many candidates 'just wrote down that a cost was included because it was relevant, but didn't say why'. Ensure you are able to explain why a cost is relevant / not relevant to a decision.

1.1 Machinery user costs

Once a machine has been bought its cost is a sunk cost. Depreciation is not a relevant cost, because it is not a cash flow. However, using machinery may involve some incremental costs. These costs might be
referred to as user costs and they include hire charges and any fall in resale value of owned assets, through use.

1.1.1 Example: Machine user costs

Bronty Co is considering whether to undertake some contract work for a customer. The machinery required for the contract would be as follows.
(a) A special cutting machine will have to be hired for three months for the work (the length of the contract). Hire charges for this machine are $\$ 75$ per month, with a minimum hire charge of $\$ 300$.
(b) All other machinery required in the production for the contract has already been purchased by the organisation on hire purchase terms. The monthly hire purchase payments for this machinery are $\$ 500$. This consists of $\$ 450$ for capital repayment and $\$ 50$ as an interest charge. The last hire purchase payment is to be made in two months time. The cash price of this machinery was $\$ 9,000$ two years ago. It is being depreciated on a straight line basis at the rate of $\$ 200$ per month. However, it still has a useful life which will enable it to be operated for another 36 months.

The machinery is highly specialised and is unlikely to be required for other, more profitable jobs over the period during which the contract work would be carried out. Although there is no immediate market for selling this machine, it is expected that a customer might be found in the future. It is further estimated that the machine would lose $\$ 200$ in its eventual sale value if it is used for the contract work.

What is the relevant cost of machinery for the contract?

Solution

(a) The cutting machine will incur an incremental cost of $\$ 300$, the minimum hire charge.
(b) The historical cost of the other machinery is irrelevant as a past cost; depreciation is irrelevant as a non-cash cost; and future hire purchase repayments are irrelevant because they are committed costs. The only relevant cost is the loss of resale value of the machinery, estimated at $\$ 200$ through use. This 'user cost' will not arise until the machinery is eventually resold and the $\$ 200$ should be discounted to allow for the time value of money. However, discounting is ignored here, and will be discussed in a later chapter.
(c) Summary of relevant costs

Incremental hire costs 300
User cost of other machinery 200
500

1.2 Labour

Often the labour force will be paid irrespective of the decision made and the costs are therefore not incremental. Take care, however, if the labour force could be put to an alternative use, in which case the relevant costs are the variable costs of the labour and associated variable overheads plus the contribution forgone from not being able to put it to its alternative use.

1.3 Materials

The relevant cost of raw materials is generally their current replacement cost, unless the materials have already been purchased and would not be replaced once used.
If materials have already been purchased but will not be replaced, then the relevant cost of using them is either (a) their current resale value or (b) the value they would obtain if they were put to an alternative use, if this is greater than their current resale value.

The higher of (a) or (b) is then the opportunity cost of the materials. If the materials have no resale value and no other possible use, then the relevant cost of using them for the opportunity under consideration would be nil.

The flowchart below shows how the relevant costs of materials can be identified, provided that the materials are not in short supply, and so have no internal opportunity cost.

Question
Relevant cost of materials

O'Reilly Co has been approached by a customer who would like a special job to be done for him, and who is willing to pay $\$ 22,000$ for it. The job would require the following materials:

Material	Total units required	Units already in inventory	Book value of units in inventory \$/unit	Realisable value \$/unit	Replacement
A	1,000	0	-	-	cost
B	1,000	600	2	2.5	6
C	1,000	700	3	5	
D	200	200	4	2.5	4
				6.0	9

(a) Material B is used regularly by O'Reilly Ltd, and if units of B are required for this job, they would need to be replaced to meet other production demand.
(b) Materials C and D are in inventory as the result of previous over-buying, and they have a restricted use. No other use could be found for material C , but the units of material D could be used in another job as substitute for 300 units of material E , which currently costs $\$ 5$ per unit (of which the company has no units in inventory at the moment).

What are the relevant costs of material, in deciding whether or not to accept the contract?

Answer

(a) Material \mathbf{A} is not owned and would have to be bought in full at the replacement cost of $\$ 6$ per unit.
(b) Material B is used regularly by the company. There is existing inventory (600 units) but if these are used on the contract under review a further 600 units would be bought to replace them. Relevant costs are therefore 1,000 units at the replacement cost of $\$ 5$ per unit.
(c) Material C: 1,000 units are needed and 700 are already in inventory. If used for the contract, a further 300 units must be bought at $\$ 4$ each. The existing inventory of 700 will not be replaced. If they are used for the contract, they could not be sold at $\$ 2.50$ each. The realisable value of these 700 units is an opportunity cost of sales revenue forgone.
(d) Material D: these are already in inventory and will not be replaced. There is an opportunity cost of using D in the contract because there are alternative opportunities either to sell the existing
inventory for $\$ 6$ per unit ($\$ 1,200$ in total) or avoid other purchases (of material E), which would cost $300 \times \$ 5=\$ 1,500$. Since substitution for E is more beneficial, $\$ 1,500$ is the opportunity cost.
(e) Summary of relevant costs

	$\$$
Material A $(1,000 \times \$ 6)$	6,000
Material B $(1,000 \times \$ 5)$	5,000
Material C $(300 \times \$ 4)$ plus $(700 \times \$ 2.50)$	2,950
Material D	$\underline{1,500}$
Total	$\underline{\underline{15,450}}$

1.4 Opportunity costs

Other potential relevant costs include opportunity costs.
Opportunity cost is the benefit sacrificed by choosing one opportunity rather than the next best alternative. You will often encounter opportunity costs when there are several possible uses for a scarce resource.

For example, if a material is in short supply, it may be transferred from the production of one product to that of another product. The opportunity cost is the contribution lost from ceasing production of the original product.

Key term

Opportunity cost is the value of a benefit sacrificed when one course of action is chosen, in preference to an alternative. The opportunity cost is represented by the forgone potential benefit from the best rejected course of action.

Question

An information technology consultancy firm has been asked to do an urgent job by a client, for which a price of $\$ 2,500$ has been offered. The job would require the following.
(a) 30 hours' work from one member of staff, who is paid on an hourly basis, at a rate of $\$ 20$ per hour, but who would normally be employed on work for clients where the charge-out rate is $\$ 45$ per hour. No other member of staff is able to do the member of staff in question's work.
(b) The use of 5 hours of mainframe computer time, which the firm normally charges out to external users at a rate of $\$ 50$ per hour. Mainframe computer time is currently used 24 hours a day, 7 days a week.
(c) Supplies and incidental expenses of $\$ 200$.

Required

Fill in the blank in the sentence below.
The relevant cost or opportunity cost of the job is \$........

Answer

The correct answer is $\$ 1,800$.
The relevant cost or opportunity cost of the job would be calculated as follows.

	$\$$
Labour (30 hours $\times \$ 45$)	1,350
Computer time opportunity cost (5 hours $\times \$ 50)$	250
Supplies and expenses	$\underline{1,800}$

2 Make or buy decisions

In a make or buy decision with no limiting factors, the relevant costs are the differential costs between the two options.

A make or buy problem involves a decision by an organisation about whether it should make a product or whether it should pay another organisation to do so. Here are some examples of make or buy decisions.
(a) Whether a company should manufacture its own components, or else buy the components from an outside supplier
(b) Whether a construction company should do some work with its own employees, or whether it should sub-contract the work to another company
(c) Whether a service should be carried out by an internal department or whether an external organisation should be employed (discussed more fully later in this chapter)

The 'make' option should give management more direct control over the work, but the 'buy' option often has the benefit that the external organisation has a specialist skill and expertise in the work. Make or buy decisions should certainly not be based exclusively on cost considerations.
If an organisation has the freedom of choice about whether to make internally or buy externally and has no scarce resources that put a restriction on what it can do itself, the relevant costs for the decision will be the differential costs between the two options.

2.1 Example: Make or buy decision

Shellfish Co makes four components, W, X, Y and Z, for which costs in the forthcoming year are expected to be as follows.

	W	X	Y	Z
Production (units)	1,000	2,000	4,000	3,000
Unit marginal costs	$\$$	$\$$	$\$$	$\$$
Direct materials	4	5	2	4
Direct labour	8	9	4	6
Variable production overheads	$\underline{2}$	$\underline{3}$	$\underline{1}$	$\underline{2}$
	$\underline{\underline{14}}$	$\underline{\underline{17}}$	$\underline{\underline{7}}$	$\underline{\underline{12}}$

Directly attributable fixed costs per annum and committed fixed costs:
Incurred as a direct consequence of making W 1,000
Incurred as a direct consequence of making X 5,000
Incurred as a direct consequence of making Y 6,000
Incurred as a direct consequence of making Z 8,000
Other fixed costs (committed) $\quad 30,000$ 50,000

A sub-contractor has offered to supply units of W, X, Y and Z for $\$ 12, \$ 21, \$ 10$ and $\$ 14$ respectively. Should Shellfish make or buy the components?

Solution

(a) The relevant costs are the differential costs between making and buying, and they consist of differences in unit variable costs plus differences in directly attributable fixed costs. Subcontracting will result in some fixed cost savings.

	W	X	Y	Z
	\$	\$	\$	\$
Unit variable cost of making	14	17	7	12
Unit variable cost of buying	12	21	10	14
	(2)	4	3	2
Annual requirements (units)	1,000	2,000	4,000	3,000
	\$	\$	\$	\$
Extra variable cost of buying (per annum)	$(2,000)$	8,000	12,000	6,000
Fixed costs saved by buying	$(1,000)$	$(5,000)$	$(6,000)$	$(8,000)$
Extra total cost of buying	$\underline{(3,000})$	3,000	6,000	$\underline{(2,000})$

(b) The company would save $\$ 3,000$ pa by sub-contracting component W (where the purchase cost would be less than the marginal cost per unit to make internally) and would save $\$ 2,000$ pa by subcontracting component Z (because of the saving in fixed costs of $\$ 8,000$).
(c) In this example, relevant costs are the variable costs of in-house manufacture, the variable costs of sub-contracted units, and the saving in fixed costs.
(d) Further considerations
(i) If components W and Z are sub-contracted, the company will have spare capacity. How should that spare capacity be profitably used? Are there hidden benefits to be obtained from sub-contracting? Would the company's workforce resent the loss of work to an outside sub-contractor, and might such a decision cause an industrial dispute?
(ii) Would the sub-contractor be reliable with delivery times, and would he supply components of the same quality as those manufactured internally?
(iii) Does the company wish to be flexible and maintain better control over operations by making everything itself?
(iv) Are the estimates of fixed cost savings reliable? In the case of Product W, buying is clearly cheaper than making in-house. In the case of product Z, the decision to buy rather than make would only be financially beneficial if it is feasible that the fixed cost savings of $\$ 8,000$ will really be 'delivered' by management. All too often in practice, promised savings fail to materialise!

3 Outsourcing

The relevant costs/revenues in decisions relating to the operating of internal service departments or the use of external services are the differential costs between the two options.

3.1 The trend in outsourcing

A significant trend in the 1990s was for companies and government bodies to concentrate on their core competences - what they are really good at (or set up to achieve) - and turn other functions over to specialist contractors. A company that earns its profits from, say, manufacturing bicycles, does not also need to have expertise in, say, mass catering or office cleaning. Facilities management companies such as Rentokil have grown in response to this.
Key term
Outsourcing is the use of external suppliers for finished products, components or services. This is also known as contract manufacturing or sub-contracting.

Reasons for this trend include:
(a) Frequently the decision is made on the grounds that specialist contractors can offer superior quality and efficiency. If a contractor's main business is making a specific component it can invest in the specialist machinery and labour and knowledge skills needed to make that component. However, this component may be only one of many needed by the contractor's customer, and the
complexity of components is now such that attempting to keep internal facilities up to the standard of specialists detracts from the main business of the customer.
(b) Contracting out manufacturing frees capital that can then be invested in core activities such as market research, product definition, product planning, marketing and sales.
(c) Contractors have the capacity and flexibility to start production very quickly to meet sudden variations in demand. In-house facilities may not be able to respond as quickly, because of the need to redirect resources from elsewhere.

3.2 Internal and external services

In administrative and support functions, too, companies are increasingly likely to use specialist companies. Decisions such as the following are now common.
(a) Whether the design and development of a new computer system should be entrusted to in-house data processing staff or whether an external software house should be hired to do the work.
(b) Whether maintenance and repairs of certain items of equipment should be dealt with by in-house engineers, or whether a maintenance contract should be made with a specialist organisation.

Even if you are not aware of specialist 'facilities management' companies such as Securicor, you will be familiar with the idea of office cleaning being done by contractors.

The costs relevant to such decisions are little different to those that are taken into account in a 'conventional' make or buy situation: they will be the differential costs between performing the service internally or using an external provider.

Exam focus point

The major problem in examination questions is likely to be identifying whether existing staff will be made redundant or whether they will be redeployed, and whether there are alternative uses for the other resources made available by ceasing to perform the service internally. These, it hardly needs stating, are also likely to be the major problems in practice.

3.3 Performance of outsourcers

Once a decision has been made to outsource, it is essential that the performance of the outsourcer is monitored and measured.

Measures could include cost savings, service improvement and employee satisfaction. It is important to have realistic goals and expectations and to have objective ways to measure success.

The performance of the outsourcer, whether good or bad, can interfere with the performance assessment of an internal function. For example:

- Maintenance of equipment could be carried out badly by an outsourcer and this may result in increased breakdowns and reduced labour efficiency of a production team
- If information arrives late or is incorrect, the wrong decision may be made

3.4 Example: Outsourcing

Stunnaz is considering a proposal to use the services of a press cuttings agency. At the moment, press cuttings are collected by a junior member of the marketing department, who is also responsible for office administration (including filing), travel bookings, a small amount of proof reading and making the tea. The total annual cost of employing this person is $\$ 15,000$ pa.
There is concern that the ability of this person to produce a comprehensive file of cuttings is limited by the time available. She has calculated that she needs to spend about two hours of her seven and a half hour day simply reading the national and trade press, but usually only has about five hours a week for this job.

Press subscriptions currently cost $\$ 850$ pa and are paid annually in advance.

The assistant makes use of a small micro-fiche device for storing cuttings. The cuttings are sent to a specialist firm once a month to be put onto fiche. Stunnaz pays $\$ 45$ each month for this service. The micro-fiche reader is leased at a cost of $\$ 76$ per calendar month. This lease has another 27 months to run.

The cuttings service bureau has proposed an annual contract at a cost of $\$ 1,250$. Several existing users have confirmed their satisfaction with the service they receive.

Should Stunnaz outsource its press cuttings work?

Solution

Current annual costs amount to:

Micro fiche service	$\$$
Subscriptions	$\$ 45 \times 12=540$
	$\underline{850}$

The monthly leasing charge is a committed cost that must be paid whatever the decision. It is not therefore a decision-relevant cost.

Engaging the services of the press cuttings agency therefore has the potential to save Stunnaz $\$ 140 \mathrm{pa}$. However, this is not the final word: there are other considerations.
(a) The 'in-house' option should give management more direct control over the work, but the 'outsource' option often has the benefit that the external organisation has a specialist skill and expertise in the work. Decisions should certainly not be based exclusively on cost considerations.
(b) Will outsourcing create spare capacity? How should that spare capacity be profitably used?
(c) Are there hidden benefits to be obtained from subcontracting?
(d) Would the company's workforce resent the loss of work to an outside subcontractor, and might such a decision cause an industrial dispute?
(e) Would the subcontractor be reliable with delivery times and quality?
(f) Does the company wish to be flexible and maintain better control over operations by doing everything itself?

4 Further processing decisions

A joint product should be processed further past the split-off point if sales value minus post-separation (further processing) costs is greater than sales value at split-off point.

4.1 Joint products

You will have covered joint products in your earlier studies and the following will act as a brief reminder.
Knowledge brought forward from earlier studies

- Joint products are two or more products which are output from the same processing operation, but which are indistinguishable from each other up to their point of separation.
- Joint products have a substantial sales value. Often they require further processing before they are ready for sale. Joint products arise, for example, in the oil refining industry where diesel fuel, petrol, paraffin and lubricants are all produced from the same process.
- A joint product is regarded as an important saleable item, and so it should be separately costed. The profitability of each joint product should be assessed in the cost accounts.
- The point at which joint products become separately identifiable is known as the split-off point or separation point.
- Costs incurred prior to this point of separation are common or joint costs, and these need to be allocated (apportioned) in some manner to each of the joint products.
- Problems in accounting for joint products are basically of two different sorts.
(a) How common costs should be apportioned between products, in order to put a value to closing inventory and to the cost of sale (and profit) for each product.
(b) Whether it is more profitable to sell a joint product at one stage of processing, or to process the product further and sell it at a later stage.

Suppose a manufacturing company carries out process operations in which two or more joint products are made from a common process. If the joint products can be sold either in their existing condition at the 'split-off' point at the end of common processing or after further separate processing, a decision should be taken about whether to sell each joint product at the split-off point or after further processing.

Attention!

Note that joint (pre-separation) costs are incurred regardless of the decision and are therefore irrelevant.

4.2 Example: Further processing

The Poison Chemical Company produces two joint products, Alash and Pottum from the same process. Joint processing costs of $\$ 150,000$ are incurred up to split-off point, when 100,000 units of Alash and 50,000 units of Pottum are produced. The selling prices at split-off point are $\$ 1.25$ per unit for Alash and $\$ 2.00$ per unit for Pottum.
The units of Alash could be processed further to produce 60,000 units of a new chemical, Alashplus, but at an extra fixed cost of $\$ 20,000$ and variable cost of 30 c per unit of input. The selling price of Alashplus would be $\$ 3.25$ per unit. Should the company sell Alash or Alashplus?

Solution

The only relevant costs/incomes are those which compare selling Alash against selling Alashplus. Every other cost is irrelevant: they will be incurred regardless of what the decision is.

	Alash		Alashplus	
Selling price per unit	$\$ 1.25$		$\$ 3.25$	
	$\$$	$\$$	$\$$	
Total sales	125,000			195,000
Post-separation processing costs	-	Fixed	20,000	
Sales minus post-separation	-	Variable	$\underline{30,000}$	$\underline{50,000}$
(further processing) costs	$\underline{125,000}$		$\underline{\underline{145,000}}$	

It is $\$ 20,000$ more profitable to convert Alash into Alashplus.

A company manufactures four products from an input of a raw material to Process 1. Following this process, product A is processed in Process 2, product B in Process 3, product C in Process 4 and product D in Process 5.

The normal loss in Process 1 is 10\% of input, and there are no expected losses in the other processes. Scrap value in Process 1 is $\$ 0.50$ per litre. The costs incurred in Process 1 are apportioned to each product according to the volume of output of each product. Production overhead is absorbed as a percentage of direct wages.

Data in respect of the month of October

| | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | ---: | ---: |
| | 1 | 2 | 3 | 4 | 5 | Total |
| | $\$^{\prime} 000$ |
| Direct materials at $\$ 1.25$ per litre | 100 | | | | | 100 |
| Direct wages | 48 | 12 | 8 | 4 | 16 | 88 |
| Production overhead | | | | | | 66 |

	Product			
	A	B	C	D
Output	litres	litres	litres	litres
	22,000	20,000	10,000	18,000
Selling price	$\$$	$\$$	$\$$	$\$$
Estimated sales value at end of Process 1	4.00	3.00	2.00	5.00
	2.50	2.80	1.20	3.00

Required

Suggest and evaluate an alternative production strategy which would optimise profit for the month. It should not be assumed that the output of Process 1 can be changed.

Answer

During the month, the quantity of input to Process 1 was 80,000 litres. Normal loss is $10 \%=8,000$ litres, and so total output should have been 72,000 litres of A, B, C and D. Instead, it was only 70,000 litres. In an 'average' month, output would have been higher, and this might have some bearing on the optimal production and selling strategy.

The central question is whether or not the output from Process 1 should be processed further in processes 2, 3, 4 and 5, or whether it should be sold at the 'split-off' point, at the end of Process 1. Each joint product can be looked at individually.

A further question is whether the wages costs in process $2,3,4$ and 5 would be avoided if the joint products were sold at the end of process 1 and not processed further. It will be assumed that all the wages costs would be avoidable, but none of the production overhead costs would be. This assumption can be challenged, and in practice would have to be investigated.

	A	B	C	D
	\$	\$	\$	\$
Selling price, per litre	4.00	3.00	2.00	5.00
Selling price at end of process 1	2.50	2.80	1.20	3.00
Incremental selling price, per litre	1.50	0.20	0.80	2.00
Litres output	22,000	20,000	10,000	18,000
Total incremental revenue from further processing	\$'000 33	\$'000	\$'000 8	\$ O
Avoidable costs from selling at split-off point (wages saved)	12	8	4	16
Incremental benefit/(cost) of further processing	21	(4)	4	$\underline{\underline{20}}$

This analysis would seem to indicate that products \mathbf{A}, \mathbf{C} and \mathbf{D} should be further processed in processes 2,4 and 5 respectively, but that product B should be sold at the end of process $\mathbf{1}$, without further processing in process 3 . The saving would be at least $\$ 4,000$ per month.
If some production overhead (which is 75% of direct wages) were also avoidable, this would mean that:
(a) Selling product B at the end of process 1 would offer further savings of up to (75% of $\$ 8,000$) $\$ 6,000$ in overheads, and so \$10,000 in total.
(b) The incremental benefit from further processing product C might fall by up to (75% of $\$ 4,000$) $\$ 3,000$ to $\$ 1,000$, meaning that it is only just profitable to process C beyond the split-off point.

Shutdown/discontinuance problems can be simplified into short-run relevant cost decisions.

5.1 Simplifying decisions

Discontinuance or shutdown problems involve the following decisions.
(a) Whether or not to close down a product line, department or other activity, either because it is making losses or because it is too expensive to run
(b) If the decision is to shut down, whether the closure should be permanent or temporary

In practice, shutdown decisions may often involve longer-term considerations, and capital expenditures and revenues.
(a) A shutdown should result in savings in annual operating costs for a number of years into the future.
(b) Closure will probably release unwanted non-current assets for sale. Some assets might have a small scrap value, but other assets, in particular property, might have a substantial sale value.
(c) Employees affected by the closure must be made redundant or relocated, perhaps after retraining, or else offered early retirement. There will be lump sum payments involved which must be taken into account in the financial arithmetic. For example, suppose that the closure of a regional office would result in annual savings of $\$ 100,000$, non-current assets could be sold off to earn income of $\$ 2$ million, but redundancy payments would be $\$ 3$ million. The shutdown decision would involve an assessment of the net capital cost of closure ($\$ 1$ million) against the annual benefits (\$100,000 pa).
It is possible, however, for shutdown problems to be simplified into short-run decisions, by making one of the following assumptions.
(a) Non-current asset sales and redundancy costs would be negligible.
(b) Income from non-current asset sales would match redundancy costs and so these capital items would be self-cancelling.
In such circumstances the financial aspect of shutdown decisions would be based on short-run relevant costs.

5.2 Example: Adding or deleting products (or departments)

A company manufactures three products, Pawns, Rooks and Bishops. The present net annual income from these is as follows.

	Pawns	Rooks	Bishops	Total
	$\$$	$\$$	$\$$	$\$$
Sales	50,000	40,000	60,000	150,000
Variable costs	$\underline{30,000}$	$\underline{25,000}$	$\underline{35,000}$	$\underline{90,000}$
Contribution	$\underline{20,000}$	$\underline{15,000}$	$\underline{25,000}$	$\underline{30,000}$
Fixed costs	$\underline{\underline{3,000}}$	$\underline{\underline{18,000}}$	$\underline{\underline{20,000}}$	$\underline{\underline{55,000}}$
Profit/loss	$\underline{\underline{5,000}}$			

The company is concerned about its poor profit performance, and is considering whether or not to cease selling Rooks. It is felt that selling prices cannot be raised or lowered without adversely affecting net income. \$5,000 of the fixed costs of Rooks are direct fixed costs which would be saved if production ceased (ie there are some attributable fixed costs). All other fixed costs, it is considered, would remain the same.
By stopping production of Rooks, the consequences would be a $\$ 10,000$ fall in profits.

Loss of contribution
Savings in fixed costs
Incremental loss
Suppose, however, it were possible to use the resources realised by stopping production of Rooks and switch to producing a new item, Crowners, which would sell for $\$ 50,000$ and incur variable costs of $\$ 30,000$ and extra direct fixed costs of $\$ 6,000$. A new decision is now required.

	Rooks	Crowners
	$\$$	$\$$
Sales	40,000	50,000
Less variable costs	$\underline{25,000}$	$\underline{30,000}$
	$\underline{15,000}$	20,000
Less direct fixed costs	$\underline{5,000}$	$\underline{6,000}$
Contribution to shared fixed costs and profit	$\underline{\underline{10,000}}$	$\underline{\underline{14,000}}$

It would be more profitable to shut down production of Rooks and switch resources to making Crowners, in order to boost profits by $\$ 4,000$ to $\$ 9,000$.

5.3 Timing of shutdown

An organisation may also need to consider the most appropriate timing for a shutdown. Some costs may be avoidable in the long run but not in the short run. For example, office space may have been rented and three months notice is required. This cost is therefore unavoidable for three months. In the same way supply contracts may require notice of cancellation. A month by month analysis of when notice should be given and savings will be made will help the decision making process.

5.4 Qualitative factors

As usual the decision is not merely a matter of choosing the best financial option. Qualitative factors must once more be considered.
(a) What impact will a shutdown decision have on employee morale?
(b) What signal will the decision give to competitors? How will they react?
(c) How will customers react? Will they lose confidence in the company's products?
(d) How will suppliers be affected? If one supplier suffers disproportionately there may be a loss of goodwill and damage to future relations.

Question

Shutdown decisions

How would the above decision change if Pawns, Rooks and Bishops were manufactured in different departments, variable costs could be split down into the costs of direct materials, labour and overheads, and fixed costs could be analysed into the costs of administrative staff and equipment and premises costs?

Answer

The decision would not change at all - unless perhaps activity based analysis of overheads were undertaken and unexpected cost patterns were revealed. The point of this exercise is to make you realise that problems that look complicated are sometimes very simple in essence even if the volume of calculations seems daunting.

5.5 Judging relative profitability

A common approach to judging the relative profitability of products is to calculate $\mathbf{C / S}$ ratios. The most profitable option is to concentrate on the product(s) with the highest C/S ratios.

Chapter Roundup

- Relevant costs are future cash flows arising as a direct consequence of a decision.
- Relevant costs are future costs - Relevant costs are incremental costs
- \quad Relevant costs are cash flows
- In a make or buy decision with no limiting factors, the relevant costs are the differential costs between the two options.
- The relevant costs/revenues in decisions relating to the operating of internal service departments or the use of external services are the differential costs between the two options.
- A joint product should be processed further past the split-off point if sales value minus post-separation (further processing) costs is greater than sales value at split-off point.
- Shutdown/discontinuance problems can be simplified into short-run relevant cost decisions.

Quick Quiz

1 Fill in the relevant costs in the four boxes in the diagram below.

2 Choose the correct word(s) from those highlighted.
In a situation where a company must subcontract work to make up a shortfall in its own in-house capabilities, its total cost will be minimised if those units bought out from a sub-contractor/made inhouse have the lowest/highest extra variable/fixed cost of buying out/making in-house per unit of scarce resource/material.

3 In a decision about whether or not to sell a joint product at the split-off point or after further processing, joint costs are relevant. True or false?

Fill in the blanks.
Most of the decisions considered in this chapter involve calculating \qquad obtained from various options after identifying \qquad They always involve \qquad
issues, which depend upon the precise situation described.

Answers to Quick Quiz

1

Limiting factor analysis

Topic list	Syllahus reference
1 Limiting factors	B3 (a)
2 Limiting factor analysis - make or buy decisions and scarce resources	B3 (b)
3 The principles of linear programming	B3 (a)
4 The graphical method	B3 (b),(c)
5 Using simultaneous equations	B3 (c)
6 Slack and surplus	B3 (e)
7 Shadow prices	B3 (d)

Introduction

We have looked at limiting factor analysis in connection with throughput accounting in Chapter 2d and you will have encountered it in your earlier studies.

When there is more than one resource constraint, the technique of linear programming can be used. A multiple scarce resource problem can be solved using a graphical method and simultaneous equations.

We also look at the meaning and calculation of shadow prices and slack.

Study guide

		Intellectival level
B3	Limiting factors	2
(a)	Identify limiting factors in a scarce resource situation and select an appropriate technique	2
(b)	Determine the optimal production plan where an organisation is restricted by a single limiting factor, including within the context of "make" or "buy" decisions	2
(c)	Formulate and solve a multiple scarce resource problem both graphically and using simultaneous equations as appropriate	2
(d)	Explain and calculate shadow prices (dual prices) and discuss their implications on decision-making and performance management	2
(e)	Calculate slack and explain the implications of the existence of slack for decision-making and performance management (Excluding simplex and sensitivity to changes in objective functions)	2

Exam guide

Linear programming is a popular topic in management accounting exams and is likely to be examined as a mixture of calculations and discussion. There is an article on linear programming in Student Accountant, March 2008. Please note that this article was not written by the current examiner.

1 Limiting factors

All companies are limited in their capacity, either for producing goods or providing services. There is always one resource that is most restrictive (the limiting factor).

Key term

A limiting factor is any factor that is in scarce supply and that stops the organisation from expanding its activities further, that is, it limits the organisation's activities.

Knowledge brought forward from earlier studies

- An organisation might be faced with just one limiting factor (other than maximum sales demand) but there might also be several scarce resources, with two or more of them putting an effective limit on the level of activity that can be achieved.
- Examples of limiting factors include sales demand and production constraints.
- Labour. The limit may be either in terms of total quantity or of particular skills.
- Materials. There may be insufficient available materials to produce enough units to satisfy sales demand.
- Manufacturing capacity. There may not be sufficient machine capacity for the production required to meet sales demand.
- It is assumed in limiting factor analysis that management would make a product mix decision or service mix decision based on the option that would maximise profit and that profit is maximised when contribution is maximised (given no change in fixed cost expenditure incurred). In other words, marginal costing ideas are applied.

Contribution will be maximised by earning the biggest possible contribution per unit of limiting factor. For example if grade A labour is the limiting factor, contribution will be maximised by earning the biggest contribution per hour of grade A labour worked

- \quad The limiting factor decision therefore involves the determination of the contribution earned per unit of limiting factor by each different product.
- If the sales demand is limited, the profit-maximising decision will be to produce the topranked product(s) up to the sales demand limit.
- In limiting factor decisions, we generally assume that fixed costs are the same whatever product or service mix is selected, so that the only relevant costs are variable costs.
- When there is just one limiting factor, the technique for establishing the contribution-maximising product mix or service mix is to rank the products or services in order of contribution-earning ability per unit of limiting factor.

Exam focus point

If resources are limiting factors, contribution will be maximised by earning the biggest possible contribution per unit of limiting factor.

Where there is just one limiting factor, the technique for establishing the contribution-maximising product or service mix is to rank the products or services in order of contribution-earning ability per unit of limiting factor.

1.1 Example: Limiting factor decision

Sausage makes two products, the Mash and the Sauce. Unit variable costs are as follows.

	Mash	Sauce
	$\$$	$\$$
Direct materials	1	3
Direct labour (\$3 per hour)	6	3
Variable overhead	$\frac{1}{8}$	$\underline{1}$
	$\underline{9}$	$\underline{7}$

The sales price per unit is $\$ 14$ per Mash and $\$ 11$ per Sauce. During July the available direct labour is limited to 8,000 hours. Sales demand in July is expected to be as follows.
Mash
3,000 units
Sauce
5,000 units

Required

Determine the production budget that will maximise profit, assuming that fixed costs per month are $\$ 20,000$ and that there is no opening inventory of finished goods or work in progress.

Solution

Step 1 Confirm that the limiting factor is something other than sales demand.

	Mash	Sauces	Total
Labour hours per unit	2 hrs	1 hr	
Sales demand	$3,000 \mathrm{units}$	$5,000 \mathrm{units}$	
Labour hours needed	$6,000 \mathrm{hrs}$	$5,000 \mathrm{hrs}$	$11,000 \mathrm{hrs}$
Labour hours available			$\underline{8,000} \mathrm{hrs}$
Shortfall			$\underline{\underline{3,000}} \mathrm{hrs}$

Labour is the limiting factor on production.

Step 2 Identify the contribution earned by each product per unit of scarce resource, that is, per labour hour worked.

	Mash	Sauce
	$\$$	$\$$
Sales price	14	11
Variable cost	$\frac{8}{6}$	$\frac{7}{4}$
Unit contribution	$\underline{=}$	$\underline{=}$
Labour hours per unit	2 hrs	1 hr
Contribution per labour hour (= per unit of limiting factor)	$\$ 3$	$\$ 4$

Although Mashes have a higher unit contribution than Sauces, two Sauces can be made in the time it takes to make one Mash. Because labour is in short supply it is more profitable to make Sauces than Mashes.

Step 3 Determine the budgeted production and sales. Sufficient Sauces will be made to meet the full sales demand, and the remaining labour hours available will then be used to make Mashes.

(a)			Hours	Hours	Priority for
	Product	Demand	required	available	manufacture
	Sauces	5,000	5,000	5,000	1st
	Mashes	3,000	6,000	3,000 (bal)	2nd
			11,000	8,000	
(b)	Product		Hours	Contribution	
		Units	needed	per unit	Total
				\$	\$
	Sauces	5,000	5,000	4	20,000
	Mashes (balance)	1,500	3,000	6	9,000
			8,000		29,000
	Less fixed costs				20,000
	Profit				9,000

Conclusion

(a) Unit contribution is not the correct way to decide priorities.
(b) Labour hours are the scarce resource, therefore contribution per labour hour is the correct way to decide priorities.
(c) The Sauce earns $\$ 4$ contribution per labour hour, and the Mash earns $\$ 3$ contribution per labour hour. Sauces therefore make more profitable use of the scarce resource, and should be manufactured first.

1.2 Two potentially limiting factors

You may be asked to deal with situations where two limiting factors are potentially limiting (and there are also product/service demand limitations). The approach in these situations is to find out which factor (if any) prevents the business from fulfilling maximum demand.

Exam focus point

Where there is a maximum potential sales demand for an organisation's products or services, they should still be ranked in order of contribution-earning ability per unit of the limiting factor. The contribution-maximising decision, however, will be to produce the top-ranked products (or to provide the top-ranked services) up to the sales demand limit.

1.3 Example: Two potentially limiting factors

Lucky manufactures and sells three products, X, Y and Z , for which budgeted sales demand, unit selling prices and unit variable costs are as follows.

Budgeted sales demand	X 550 units		Y 500 units		Z 400 units	
	\$	\$	\$	\$	\$	\$
Unit sales price		16		18		14
Variable costs: materials	8		6		2	
labour	4		6		9	
		12		12		11
Unit contribution		4		6		3

The organisation has existing inventory of 250 units of X and 200 units of Z, which it is quite willing to use up to meet sales demand. All three products use the same direct materials and the same type of direct labour. In the next year, the available supply of materials will be restricted to $\$ 4,800$ (at cost) and the available supply of labour to \$6,600 (at cost).

Required

Determine what product mix and sales mix would maximise the organisation's profits in the next year.

Solution

There appear to be two scarce resources, direct materials and direct labour. This is not certain, however, and because there is a limited sales demand as well, either of the following might apply.

- \quad There is no limiting factor at all, except sales demand.
- There is only one scarce resource that prevents the full potential sales demand being achieved.

Step 1 Establish which of the resources, if any, is scarce.

	X	Y	Z
	Units	Units	Units
Budgeted sales	550	500	400
Inventory in hand	$\underline{\underline{250}}$	$\underline{0}$	$\underline{\underline{200}}$
Minimum production to meet demand	$\underline{\underline{500}}$	$\underline{\underline{200}}$	$\underline{\underline{200}}$

	Minimum production to meet sales demand Units	Required materials at cost	Required labour at cost
X	300	$\$$	$\$$
Y	500	2,400	1,200
Z	200	3,000	3,000
Total required		5,800	$\underline{1,800}$
Total available	$\underline{4,800}$	$\underline{6,000}$	
(Shortfall)/Surplus	$\underline{\underline{(1,000})}$	$\underline{\underline{6,600}}$	

Materials are a limiting factor, but labour is not.
Step 2 Rank X, Y and Z in order of contribution earned per $\$ 1$ of direct materials consumed.

	X	Y	Z
	$\$$	$\$$	$\$$
Unit contribution	4	6	3
Cost of materials	8	6	2
Contribution per $\$ 1$ materials	$\$ 0.50$	$\$ 1.00$	$\$ 1.50$
Ranking	3 rd	2 nd	1 st

Step 3 Determine a production plan. Z should be manufactured up to the limit where units produced plus units held in inventory will meet sales demand, then Y second and X third, until all the available materials are used up.

Ranking	Product	Sales demand less units held Units	Production quantity Units	Materials cost	
1st	Z	200	200	$(\times \$ 2)$	400
2nd	Y	500	500	$(\times \$ 6)$	3,000
3rd	X	300	175	$(\times \$ 8)$	$\underline{* 1,400}$
		Total available		$\underline{4,800}$	

* Balancing amount using up total available.

Step 4 Draw up a budget. The profit-maximising budget is as follows.

Product	Units	Material cost/ unit $\$$	Total material cost $\$$	Contribution per $\$ 1$ of material $\$$	Total contribution $\$$
Z op. inventory Z production	$\frac{200}{200}$	$\boxed{400}$	$\$ 2$	800	$\$ 1.50$

2 Limiting factor analysis - make or buy decisions and scarce resources

In a situation where a company must sub-contract work to make up a shortfall in its own in-house capabilities, its total costs will be minimised if those units bought have the lowest extra variable cost of buying per unit of scarce resource saved by buying.

2.1 Combining internal and external production

An organisation might want to do more things than it has the resources for, and so its alternatives would be as follows.
(a) Make the best use of the available resources and ignore the opportunities to buy help from outside
(b) Combine internal resources with buying externally so as to do more and increase profitability

Buying help from outside is justifiable if it adds to profits. A further decision is then required on how to split the work between internal and external effort. What parts of the work should be given to suppliers or sub-contractors so as to maximise profitability?

In a situation where a company must sub-contract work to make up a shortfall in its own in-house capabilities, its total costs will be minimised if those units bought have the lowest extra variable cost of buying per unit of scarce resource saved by buying.

2.1.1 Example: Make or buy decisions with scarce resources

MM manufactures three components, S, A and T using the same machines for each. The budget for the next year calls for the production and assembly of 4,000 of each component. The variable production cost per unit of the final product is as follows.

Machine hours
 Variable cost
 \$

1 unit of $S \quad 3 \quad 20$
1 unit of A 2
1 unit of T 4
Assembly 20

Only 24,000 hours of machine time will be available during the year, and a sub-contractor has quoted the following unit prices for supplying components: S \$29; A \$40; T \$34.

Required

Advise MM.

Solution

The organisation's budget calls for 36,000 hours of machine time, if all the components are to be produced in-house. Only 24,000 hours are available, and so there is a shortfall of 12,000 hours of machine time, which is therefore a limiting factor. The shortage can be overcome by subcontracting the equivalent of 12,000 machine hours' output to the subcontractor.

The assembly costs are not relevant costs because they are unaffected by the decision.
The decision rule is to minimise the extra variable costs of sub-contracting per unit of scarce resource saved (that is, per machine hour saved).

	S	A	T
Variable cost of making	$\$$	$\$$	$\$$
Variable cost of buying	20	36	24
Extra variable cost of buying	$\frac{29}{9}$	$\frac{40}{4}$	$\frac{34}{10}$
Machine hours saved by buying	3 hrs	2 hrs	4 hrs
Extra variable cost of buying per hour saved	$\$ 3$	$\$ 2$	$\$ 2.50$

This analysis shows that it is cheaper to buy A than to buy T and it is most expensive to buy S . The priority for making the components in-house will be in the reverse order: S, then T, then A. There are enough machine hours to make all 4,000 units of S (12,000 hours) and to produce 3,000 units of T (another 12,000 hours). 12,000 hours' production of T and A must be sub-contracted.

The cost-minimising and so profit-maximising make and buy schedule is as follows.

	Machine hours used/saved	Number of units	Unit variable Component	
Make:	S	12,000		Total variable

Total variable cost of components, excluding assembly costs

TW manufactures two products, the D and the E, using the same material for each. Annual demand for the D is 9,000 units, while demand for the E is 12,000 units. The variable production cost per unit of the D is $\$ 10$, that of the $\mathrm{E} \$ 15$. The D requires 3.5 kgs of raw material per unit, the E requires 8 kgs of raw material per unit. Supply of raw material will be limited to $87,500 \mathrm{kgs}$ during the year.

A sub contractor has quoted prices of $\$ 17$ per unit for the D and $\$ 25$ per unit for the E to supply the product. How many of each product should TW manufacture in order to maximise profits?

Required
Fill in the blanks in the sentence below.
TW should manufacture \qquad units of D and \qquad units of E to maximise profits.

Answer

The correct answer is: TW should manufacture 9,000 units of D and 7,000 units of E.
$D \quad E$
\$ per unit
Variable cost of making
10
17
$\frac{17}{7} \quad 25$
Variable cost of buying
Extra variable cost of buying $\quad 7$
Raw material saved by buying 3.5 kgs
Extra variable cost of buying per kg saved
Priority for internal manufacture

Production plan
Material used
kgs
\therefore Make D $(9,000 \times 3.5 \mathrm{kgs}) \quad 31,500$
E $(7,000 \times 8 \mathrm{kgs}) \quad 56,000$
87,500

The remaining 5,000 units of E should be purchased from the contractor.

3 The principles of linear programming
 6/08

Linear programming is a technique for solving problems of profit maximisation or cost minimisation and resource allocation. 'Programming' has nothing to do with computers: the word is simply used to denote a series of events. If a scenario contains two or more limiting factors, linear programming must be applied.

A typical business problem is to decide how a company should divide up its production among the various types of product it manufactures in order to obtain the maximum possible profit. A business cannot simply aim to produce as much as possible because there will be limitations or constraints within which the production must operate. Such constraints could be one or more of the following.

- Limited quantities of raw materials available
- A fixed number of labour hours per week for each type of worker
- Limited machine hours

Moreover, since the profits generated by different products vary, it may be better not to produce any of a less profitable line, but to concentrate all resources on producing the more profitable ones. On the other hand limitations in market demand could mean that some of the products produced may not be sold.

4 The graphical method

Linear programming, at least at this fairly simple level, is a technique that can be carried out in a fairly 'handle turning' manner once you have got the basic ideas sorted out. The steps involved are as follows.

1	Define variables	5	Establish feasible region
2	Establish constraints	6	Determine optimal solution

3 Construct objective function
4 Graph constraints

4.1 Example: WX Co

The following example will be used throughout the chapter to illustrate the graphical method of linear programming.

WX Co manufactures two products, A and B. Both products pass through two production departments, mixing and shaping. The organisation's objective is to maximise contribution to fixed costs.

Product A is sold for $\$ 1.50$ whereas product B is priced at $\$ 2.00$. There is unlimited demand for product A but demand for B is limited to 13,000 units per annum. The machine hours available in each department are restricted to 2,400 per annum. Other relevant data are as follows.

Machine hours required	Mixing	Shaping
	Hrs	Hrs
Product A	0.06	0.04
Product B	0.08	0.12

Variable cost per unit \$
Product A 1.30
Product B 1.70

What are the constraints in the situation facing WX Co ?

Answer

These are the constraints that will prevent WX from producing and selling as much of each product as it chooses.

The constraints are machine hours in each department and sales demand for product B. There is no restriction on the availability of labour hours. Selling price cannot be a constraint.

4.2 Formulating the problem using the graphical method: steps 1-3

Let's formulate WX's problem.

Step 1 Define variables

What are the quantities that WX can vary? Obviously not the number of machine hours or the demand for product B. The only things which it can vary are the number of units of each type of product produced. It is those numbers which the company has to determine in such a way as to obtain the maximum possible profit. Our variables (which are usually products being produced) will therefore be as follows.

Let $x=$ number of units of product A produced.
Let $\mathrm{y}=$ number of units of product B produced.

Step 2 Establish constraints

The value of the objective function (the maximum contribution achievable from producing products A and B) is limited by the constraints facing WX, however. To incorporate this into the problem we need to translate the constraints into inequalities involving the variables defined in Step 1. An inequality is an equation taking the form 'greater than or equal to' or 'less than or equal to'.
(a) Consider the mixing department machine hours constraint.
(i) Each unit of product A requires 0.06 hours of machine time. Producing five units therefore requires 5×0.06 hours of machine time and, more generally, producing x units will require $0.06 x$ hours.
(ii) Likewise producing y units of product B will require 0.08 y hours.
(iii) The total machine hours needed in the mixing department to make x units of product A and y units of product B is $0.06 x+0.08 y$.
(iv) We know that this cannot be greater than 2,400 hours and so we arrive at the following inequality.
$0.06 x+0.08 y \leq 2,400$

Question

How can the constraint facing the shaping department be written as an inequality?

Answer

The constraint facing the shaping department can be written as follows:
$0.04 \mathrm{x}+0.12 \mathrm{y} \leq 2,400$
The constraint has to be a 'less than or equal to' inequality, because the amount of resource used ($0.04 x+$ $0.12 y$) has to be 'less than or equal to' the amount available of 2,400 hours.
(b) The final inequality is easier to obtain. The number of units of product B produced and sold is y but this has to be less than or equal to $\mathbf{1 3 , 0 0 0}$. Our inequality is therefore as follows. $y \leq 13,000$.
(c) We also need to add non-negativity constraints ($\mathbf{x} \geq 0, \mathbf{y} \geq 0$) since negative numbers of products cannot be produced. (Linear programming is simply a mathematical tool and so there is nothing in this method which guarantees that the answer will 'make sense'. An unprofitable product may produce an answer which is negative. This is mathematically correct but nonsense in operational terms. Always remember to include the non-negativity constraints. The examiner will not appreciate 'impossible' solutions.)

Step 3 Construct objective function

We now need to introduce the question of contribution or profit. We know that the contribution on each type of product is as follows.

		$\$$ per unit
Product A	$\$(1.50-1.30)$	$=$
Product B	0.20	
	$(2.00-1.70)$	$=$

The objective of the company is to maximise contribution and so the objective function to be maximised is as follows.

Contribution $(C)=0.2 x+0.3 y$

The problem has now been reduced to the following four inequalities and one equation.
Maximise contribution $(C)=0.2 x+0.3 y$, subject to the following constraints:

$0.06 x+0.08 y$	$\leq 2,400$
$0.04 x+0.12 y$	$\leq 2,400$
y	$\leq 13,000$
x, y	≥ 0

4.3 Steps 4 and 5 - graphing the problem and establishing the feasible region

Step 4 of the linear programming model is to represent the constraints as straight lines on a graph.
A graphical solution is only possible when there are two variables in the problem. One variable is represented by the \mathbf{x} axis of the graph and one by the \mathbf{y} axis. Since non-negative values are not usually allowed, the graph shows only zero and positive values of x and y.
You should be familiar with graphing an equation as a straight line from your earlier studies. The key points are re-capped below.

Knowledge brought forward from earlier studies

Revision of graphing a straight line

- To begin with, we must have a linear relationship between two measurements. For example,

$$
y=4 x+5
$$

- Note:
(1) To recognise a linear relationship the equation must only have ' x ' not ' x ' to the power of anything, such as x^{2}
(2) A straight line has two characteristics:
(i) a slope or gradient - which measures the 'steepness' of the line
(ii) a point at which it cuts the y axis - this is called the intercept:
$y=($ slope $\times x)+$ intercept. For example, $y=4 x+5$
- \quad Therefore, the gradient is 4 and the point at which the line cuts the y axis is 5 .
- To draw a straight line graph we only need to know two points that can then be joined.
- Consider the following two equations:
(i) $y=4 x+5$
(ii) $y=10-x$
- In order to draw the graphs of these equations it is necessary to decide on two values for x and then calculate the corresponding values for y . Let us use $\mathrm{x}=0$ and 10 .
(i) $(x=0, y=5)$ and ($x=10, y=45)$
(ii) $(x=0, y=10)$ and ($x=10, y=0)$
- \quad So to draw equation (i), we plot the points $(0,5)$ and $(10,45)$ and join them up.
- Similarly, to draw equation (ii), we plot the points $(0,10)$ and $(10,0)$ and join them up.

4.3.1 Graphing equations and constraints

We will return to the scenario facing WX Co at the send of section 4.3.2. For now, let us focus on the main principles involved in graphing equations and constraints.

A linear equation with one or two variables is shown as a straight line on a graph. Thus $y=6$ would be shown as follows.

If the problem included a constraint that y could not exceed 6 , the inequality $y \leq 6$ would be represented by the shaded area of the graph below.

The equation $4 x+3 y=24$ is also a straight line on a graph. To draw any straight line, we need only to plot two points and join them up. The easiest points to plot are the following.

- $\quad x=0$ (in this example, if $x=0,3 y=24, y=8$)
- $\quad y=0$ (in this example, if $y=0,4 x=24, x=6$)

By plotting the points, $(0,8)$ and $(6,0)$ on a graph, and joining them up, we have the line for $4 x+3 y=$ 24.

Any combination of values for x and y on the line satisfies the equation. Thus at a point where $x=3$ and y $=4,4 x+3 y=24$. Similarly, at a point where $x=4.5$ and $y=2,4 x+3 y=24$.

If we had a constraint $4 x+3 y \leq 24$, any combined value of x and y within the shaded area below (on or below the line) would satisfy the constraint.

Consider point P which has coordinates of $(2,2)$. Here $4 x+3 y=14$, which is less than 24 ; and at point Q where $x=51 / 2, y=2 / 3,4 x+3 y=24$. Both P and Q lie within the feasible region or feasible area.

4.3.2 Establishing the feasible region

Key term

A feasible region is the area contained within all of the constraint lines shown on a graphical depiction of a linear programming problem. All feasible combinations of output are contained within or located on the boundaries of the feasible region.

When there are several constraints, the feasible region of combinations of values of x and y must be an area where all the inequalities are satisfied. Thus, if $y \leq 6$ and $4 x+3 y \leq 24$ the feasible region would be the shaded area in the following graph.

(a) Point $R(x=0.75, y=7)$ is not in the feasible region because although it satisfies the inequality $4 x$ $+3 y \leq 24$, it does not satisfy $y \leq 6$.
(b) Point $\mathrm{T}(\mathrm{x}=5, \mathrm{y}=6)$ is not in the feasible region, because although it satisfies the inequality $\mathrm{y} \leq 6$, it does not satisfy $4 x+3 y \leq 24$.
(c) Point $S(x=1.5, y=6)$ satisfies both inequalities and lies just on the boundary of the feasible region since $y=6$ exactly, and $4 x+3 y=24$. Point S is thus at the intersection of the two lines.

Similarly, if $y \geq 6$ and $4 x+3 y \geq 24$ but x is ≤ 6, the feasible region would be the shaded area in the graph below.

Let's return to scenario facing WX Co.

Question

Draw the feasible region which arises from the constraints facing WX on the graph below (the constraints are listed in section 4.3.2).

Answer
If $0.06 x+0.08 y=2,400$, then if $x=0, y=30,000$ and if $y=0, x=40,000$.
If $0.04 x+0.12 y=2,400$, then if $x=0, y=20,000$ and if $y=0, x=60,000$.

Exam focus point

You may be required to draw a graph as part of an exam question. Marks will be available for labels and a title so make sure you can draw a clear graph.

4.4 Step 6 - finding the optimum allocation of resources $6 / 08,6 / 10$,

 12/10
FAST FORWARD

The optimum solution can be found by 'sliding the iso-contribution line out'.
Having found the feasible region (which includes all the possible solutions to the problem) we need to find which of these possible solutions is 'best' or optimal in the sense that it yields the maximum possible contribution.

Look at the feasible region of the problem faced by WX (see the answer to the question above). Even in such a simple problem as this, there are a great many possible solution points within the feasible region. Even to write them all down would be a time-consuming process and also an unnecessary one, as we shall see.
Here is the graph of WX's problem.

(a) Consider point A at which 10,000 units of product A and 5,000 units of product B are being manufactured. This will yield a contribution of $(10,000 \times \$ 0.20)+(5,000 \times \$ 0.30)=\$ 3,500$.
(b) We would clearly get more contribution at point B, where the same number of units of product B are being produced but where the number of units of product A has increased by 5,000 .
(c) We would also get more contribution at point C where the number of units of product A is the same but 2,500 more units of product B are being produced.
This argument suggests that the 'best' solution is going to be at a point on the edge of the feasible region rather than in the middle of it.

This still leaves us with quite a few points to look at but there is a way in which we can narrow down still further the likely points at which the best solution will be found. Suppose that WX wishes to earn contribution of $\$ 3,000$. The company could sell the following combinations of the two products.
(a) 15,000 units of A, no B .
(b) No A, 10,000 units of B.
(c) A suitable mix of the two, such as 7,500 A and 5,000 B.

The possible combinations required to earn contribution of $\$ 3,000$ could be shown by the straight line $0.2 x+0.3 y=3,000$.

Likewise for profits of $\$ 6,000$ and $\$ 1,500$, lines of $0.2 x+0.3 y=6,000$ and $0.2 x+0.3 y=1,500$ could be drawn showing the combination of the two products which would achieve contribution of $\$ 6,000$ or $\$ 1,500$.

The contribution lines are all parallel. (They are called iso-contribution lines, 'iso' meaning equal.) A similar line drawn for any other total contribution would also be parallel to the three lines shown here. Bigger contribution is shown by lines further from the origin $(0.2 x+0.3 y=6,000)$, smaller contribution by lines closer to the origin $(0.2 x+0.3 y=1,500)$. As $W X$ tries to increase possible contribution, we need to 'slide' any contribution line outwards from the origin, while always keeping it parallel to the other contribution lines.

As we do this there will come a point at which, if we were to move the contribution line out any further, it would cease to lie in the feasible region. Greater contribution could not be achieved, because of the constraints. In our example concerning WX this will happen, as you should test for yourself, where the contribution line just passes through the intersection of $0.06 x+0.08 y=2,400$ and $0.04 x+0.12 y=2,400$ (at coordinates $(24,000,12,000)$).

The point $(24,000,12,000)$ will therefore give us the optimal allocation of resources (to produce 24,000 units of A and 12,000 units of B).

5 Using simultaneous equations

The optimal solution can also be found using simultaneous equations.
You might think that a lot of time could be saved if we started by solving the simultaneous equations in a linear programming problem and did not bother to draw the graph.
Certainly, this procedure may give the right answer, but in general, it is not recommended until you have shown graphically which constraints are effective in determining the optimal solution. (In particular, if a question requires 'the graphical method', you must draw a graph). To illustrate this point, consider the following graph.

No figures have been given on the graph but the feasible region is OABCDE. When solving this problem, we would know that the optimum solution would be at one of the corners of the feasible area. We need to work out the profit at each of the corners of the feasible area and pick the one where the profit is greatest.
Once the optimum point has been determined graphically, simultaneous equations can be applied to find the exact values of x and y at this point.

Instead of a 'sliding the contribution line out' approach, simultaneous equations can be used to determine the optimal allocation of resources, as shown in the following example.

5.1 Example: Using simultaneous equations

The six-step process for WX Co is summarised below. Let's focus on step 6 to illustrate how simultaneous equations can be used to establish the contribution-maximising product mix.

Step 1 Define variables

$x=$ number of units of product A produced
$y=$ number of units of product B produced

Step 2 Establish constraints

The constraints are as follows.

$$
\begin{array}{rlrl}
0.06 x+0.08 y & \leq 2,400 & & \text { (mixing department) } \\
0.04 x+0.12 y & \leq 2,400 & & \text { (shaping department) } \\
y & \leq 13,000 & & \text { (demand for product B) } \\
x, y \geq 0 & & \text { (non-negativity) }
\end{array}
$$

Step 3 Construct objective function

Product A yields a contribution of $\$ 0.20$ per unit $\$(1.50-1.30)$.
Product B yields a contribution of $\$ 0.30$ per unit $\$(2.00-1.70)$.
Therefore the objective is to maximise contribution $(C)=0.2 x+0.3 y$ subject to the constraints.

Step 4 Graph problem

Step 5 Establish feasible region

The combinations of x and y that satisfy all three constraints are represented by the area OABCD.

Step 6 Determine optimal solution

Which combination will maximise contribution? Obviously, the more units of x and y, the bigger the contribution will be, and the optimal solution will be at point B, C or D . It will not be at A, since at $A, y=13,000$ and $x=0$, whereas at $B, y=13,000$ (the same) and x is greater than zero.
Using simultaneous equations to calculate the value of x and y at each of points B, C and D, and then working out total contribution at each point from this, we can establish the contribution-maximising product mix.

Point B

$$
\begin{aligned}
& y=13,000(1) \\
& 0.04 x+0.12 y=2,400(2) \\
& \text { Substitute (1) into (2) : } 0.04 x+(0.12 \times 13,000)=2,400 \\
& 0.04 x+1,560=2,400 \\
& 0.04 x=2,400-1,560 \\
& 0.04 x=840 \\
& x=840 / 0.04 \\
& x=21,000
\end{aligned}
$$

Total contribution $=(21,000 \times \$ 0.20)+(13,000 \times \$ 0.30)=\$ 8,100$.

Point C

$$
\begin{aligned}
0.06 x+0.08 y & =2,400(1) \\
0.04 \mathrm{x}+0.12 \mathrm{y} & =2,400(2) \\
0.12 \mathrm{x}+0.16 \mathrm{y} & =4,800(3)((1) \times 2) \\
0.12 \mathrm{x}+0.36 \mathrm{y} & =7,200(4)((2) \times 3) \\
0.2 \mathrm{y} & =2,400((4)-(3)) \\
y & =12,000(6) \\
0.06 \mathrm{x}+960 & =\text { (substitute } \mathrm{y} \text { in }(1)) \\
\mathrm{x} & =24,000
\end{aligned}
$$

Total contribution $=(24,000 \times \$ 0.20)+(12,000 \times \$ 0.3)=\$ 8,400$.

Point D

Total contribution $=40,000 \times \$ 0.20=\$ 8,000$.
Comparing B, C and D, we can see that contribution is maximised at C, by making 24,000 units of product A and 12,000 units of product B, to earn a contribution of $\$ 8,400$.

6 Slack and surplus

Slack occurs when maximum availability of a resource is not used. Surplus occurs when more than a minimum requirement is used.

Key term

Slack occurs when maximum availability of a resource is not used.
If, at the optimal solution, the resource used equals the resource available there is no spare capacity of a resource and so there is no slack.

If a resource which has a maximum availability is not binding at the optimal solution, there will be slack.
For example, a machine shop makes boxes (B) and tins (T). Contribution per box is $\$ 5$ and per tin is $\$ 7$. A box requires 3 hours of machine processing time, 16 kg of raw materials and 6 labour hours. A tin requires 10 hours of machine processing time, 4 kg of raw materials and 6 labour hours. In a given month, 330 hours of machine processing time are available, 400 kg of raw material and 240 labour hours. The manufacturing technology used means that at least 12 tins must be made every month. The constraints are:
$3 \mathrm{~B}+10 \mathrm{~T} \leq 330$
$16 \mathrm{~B}+4 \mathrm{~T} \leq 400$
$6 \mathrm{~B}+6 \mathrm{~T} \leq 240$

$$
T \geq 12
$$

The optimal solution is found to be to manufacture 10 boxes and 30 tins.
If we substitute these values into the inequalities representing the constraints, we can determine whether the constraints are binding or whether there is slack.

Machine time:

Raw materials:

Labour:
$(3 \times 10)+(10 \times 30)=330=$ availability Constraint is binding.

$$
(16 \times 10)+(4 \times 30)=280<400
$$

There is slack of 120 kg of raw materials.
$(6 \times 10)+(6 \times 30)=240=$ availability
Constraint is binding.
If a minimum quantity of a resource must be used and, at the optimal solution, more than that quantity is used, there is a surplus on the minimum requirement. This is shown here in the production of tins where the optimal production is 30 tins but $T \geq 12$. There is therefore a surplus of 18 tins over the minimum production requirement.

You can see from this that slack is associated with \leq constraints and surplus with \geq constraints. Machine time and labour are binding constraints so they have been used to their full capacity. It can be argued that if more machine time and labour could be obtained, more boxes and tins could be produced and contribution increased.

7 Shadow prices

6/08, 6/10, 12/10

The shadow price or dual price of a limiting factor is the increase in value which would be created by having one additional unit of the limiting factor at the original cost.

Key term

The shadow price is the increase in contribution created by the availability of an extra unit of a limited resource at its original cost.

7.1 Limiting factors and shadow prices

Whenever there are limiting factors, there will be opportunity costs. As you know, these are the benefits forgone by using a limiting factor in one way instead of in the next most profitable way.
For example, suppose that an organisation provides two services X and Y, which earn a contribution of $\$ 24$ and $\$ 18$ per unit respectively. Service X requires 4 labour hours, and service $Y 2$ hours. Only 5,000 labour hours are available, and potential demand is for 1,000 of each of X and Y.

Labour hours would be a limiting factor, and with X earning $\$ 6$ per hour and Y earning $\$ 9$ per hour, the profit-maximising decision would be as follows.

			Contribution
	Services	Hours	$\$$
Y	1,000	2,000	18,000
X (balance)	750	$\underline{3,000}$	$\underline{18,000}$
		$\underline{\underline{5,000}}$	$\underline{\underline{36,000}}$

Priority is given to Y because the opportunity cost of providing Y instead of more of X is $\$ 6$ per hour (X 's contribution per labour hour), and since Y earns $\$ 9$ per hour, the incremental benefit of providing Y instead of X would be $\$ 3$ per hour.

If extra labour hours could be made available, more X (up to 1,000) would be provided, and an extra contribution of $\$ 6$ per hour could be earned. Similarly, if fewer labour hours were available, the decision would be to provide fewer X and to keep provision of Y at 1,000 , and so the loss of labour hours would cost the organisation $\$ 6$ per hour in lost contribution. This $\$ 6$ per hour, the marginal contributionearning potential of the limiting factor at the profit-maximising output level, is referred to as the shadow price (or dual price) of the limiting factor.

Note that the shadow price only applies while the extra unit of resource can be obtained at its normal variable cost. The shadow price also indicates the amount by which contribution could fall if an organisation is deprived of one unit of the resource.

The shadow price of a resource is its internal opportunity cost. This is the marginal contribution towards fixed costs and profit that can be earned for each unit of the limiting factor that is available.
Depending on the resource in question, shadow prices enable management to make better informed decisions about the payment of overtime premiums, bonuses, premiums on small orders of raw materials and so on.

7.2 Linear programming and shadow prices

In terms of linear programming, the shadow price is the extra contribution or profit that may be earned by relaxing by one unit a binding resource constraint.
Suppose the availability of materials is a binding constraint. If one extra kilogram becomes available so that an alternative production mix becomes optimal, with a resulting increase over the original production mix contribution of $\$ 2$, the shadow price of a kilogram of material is $\$ 2$.
Note, however, that this increase in contribution of $\$ 2$ per extra kilogram of material made available is calculated on the assumption that the extra kilogram would cost the normal variable amount.

Note the following points.
(a) The shadow price therefore represents the maximum premium above the basic rate that an organisation should be willing to pay for one extra unit of a resource.
(b) Since shadow prices indicate the effect of a one unit change in a constraint, they provide a measure of the sensitivity of the result.
(c) The shadow price of a constraint that is not binding at the optimal solution is zero.
(d) Shadow prices are only valid for a small range before the constraint becomes non-binding or different resources become critical.

7.3 Example: Calculating shadow prices

This example re-visits the scenario faced by WX Co which was used to demonstrate the graphical method of linear programming earlier in the chapter. The key points are re-capped below.

WX manufactures two products, A and B . Both products pass through two production departments, mixing and shaping. The organisation's objective is to maximise contribution to fixed costs.
Product A is sold for $\$ 1.50$ whereas product B is priced at $\$ 2.00$. There is unlimited demand for product A but demand for B is limited to 13,000 units per annum. The machine hours available in each department are restricted to 2,400 per annum. Other relevant data are as follows.

Machine hours required	Mixing	Shaping
Product A	Hrs	Hrs
Product B	0.06	0.04
	0.08	0.12
Variable cost per unit		$\$$
Product A		1.30
Product B		1.70
The constraints are:		

$$
\begin{aligned}
0.06 \mathrm{x}+0.08 \mathrm{y} & \leq 2,400 \\
0.04 \mathrm{x}+0.12 \mathrm{y} & \leq 2,400 \\
\mathrm{y} & \leq 13,000 \\
\mathrm{x}, \mathrm{y} & \geq 0
\end{aligned}
$$

The objective function is:
Contribution $(C)=0.2 x+0.3 y$

The availability of time in both departments are limiting factors because both are used up fully in the optimal product mix. Let us therefore calculate the effect if one extra hour of shaping department machine time was made available so that 2,401 hours were available.

The new optimal product mix would be at the intersection of the two constraint lines $0.06 x+0.08 y=$ 2,400 and $0.04 x+0.12 y=2,401$.

Solution by simultaneous equations gives $x=23,980$ and $y=12,015$.
(You should solve the problem yourself if you are doubtful about the derivation of the solution.)

Product		Contribution per unit	Total contribution
	Units	\$	\$
A	23,980	0.20	4,796.0
B	12,015	0.30	3,604.5
			8,400.5
Contribution in original problem			
(24,00			8,400.0
Increase in contribution from one extra hour of shaping time			0.5

The shadow price of an hour of machining time in the shaping department is therefore the standard machine cost plus $\$ 0.50$.

This means that extra machine capacity could be rented, for example, provided the cost premium is less than $\$ 0.50$ per hour.

This value of machine time only applies as long as shaping machine time is a limiting factor. If more and more machine hours become available, there will eventually be so much machine time that it is no longer a limiting factor.

What is the shadow price of one hour of machine time in the mixing department?
A $\quad \$ 3$
C $\quad \$ 10.50$
B $\quad \$ 7$
D $\$ 1,193$

Answer

The correct answer is A.

If we assume one more hour of machine time in the mixing department is available, the new optimal solution is at the intersection of $0.06 x+0.08 y=2,401$ and $0.04 x+0.12 y=2,400$
Solution by simultaneous equations gives $x=24,030, y=11,990$

		Contribution	Total
Product	Units	per unit	contribution
A	24,030	0.20	$\$$
B	11,990	0.30	4,806
Contribution in original problem			$\underline{3,597}$
Reduction in contribution		$\underline{8,403}$	

\therefore Shadow price of one hour of machine time in the mixing department is $\$ 3$.

Chapter Roundup

- All companies are limited in their capacity, either for producing goods or providing services. There is always one resource that is most restrictive (the limiting factor).
- In a situation where a company must sub-contract work to make up a shortfall in its own in-house capabilities, its total costs will be minimised if those units bought have the lowest extra variable cost of buying per unit of scarce resource saved by buying.
- Linear programming is a technique for solving problems of profit maximisation or cost minimisation and resource allocation. 'Programming' has nothing to do with computers: the word is simply used to denote a series of events. If a scenario contains two or more limiting factors, linear programming must be applied.
- Linear programming, at least at this fairly simple level, is a technique that can be carried out in a fairly 'handle turning' manner once you have got the basic ideas sorted out. The steps involved are as follows.

1	Define variables	5	Establish feasible region
2	Establish constraints	6	Determine optimal solution
3	Construct objective function		
4	Graph constraints		

- The optimum solution can be found by 'sliding the iso-contribution line out'.
- The optimal solution can also be found using simultaneous equations
- Slack occurs when maximum availability of a resource is not used. Surplus occurs when more than a minimum requirement is used.
- The shadow price or dual price of a limiting factor is the increase in value which would be created by having one additional unit of the limiting factor at the original cost.

Quick Quiz

1 Fill in the blanks.
The shadow price of a scarce resource indicates the amount by which contribution would if an organisation were deprived of one unit of the resource. The shadow price only applies while the extra unit of resource can be obtained at its cost.

2 Put the following steps in the graphical approach to linear programming in the correct order.

Draw a graph of the constraints
Define variables
Establish the feasible region

Establish constraints Construct objective function Determine optimal product mix

3 In what circumstances does slack arise?
A At the optimal solution, when the resource used equals the resource available
B At the optimal solution, when a minimum quantity of a resource must be used, and more than that quantity is used
C At the optimal solution, when the resource used is less than the resource available
D At the optimal solution, when a minimum quantity of resource is used

Answers to Quick Quiz

1 fall
normal variable
2 Define variables
Draw a graph of the constraints
Establish constraints
Establish the feasible region Construct objective function

Determine optimal product mix
3 C. If a resource has a maximum availability and it's not binding at the optimal solution, there will be slack.

Now try the question below from the Exam Question Bank

Number	Level	Marks	Time
Q8	Examination	20	36 mins

Basics of Cost-Volume-Profit Analysis

The contribution income statement is helpful to managers in judging the impact on profits of changes in selling price, cost, or volume. The emphasis is on cost behavior.

Racing Bicycle Company Contribution Income Statement		
For the Month of June		
Sales (500 bicycles)	$\$$	250,000
Less: Variable expenses	150,000	
Contribution margin		
Less: Fixed expenses		100,000
Net operating income	$\$ 8$	20,000

Contribution Margin (CM) is the amount remaining from sales revenue after variable expenses have been deducted.

Basics of Cost-Volume-Profit Analysis

Racing Bicycle Company Contribution Income Statement For the Month of June		
Sales (500 bicycles)	$\$$	$\mathbf{2 5 0 , 0 0 0}$
Less: Variable expenses	$\mathbf{1 5 0 , 0 0 0}$	
Contribution margin		$\mathbf{1 0 0 , 0 0 0}$
Less: Fixed expenses		$\mathbf{8 0 , 0 0 0}$
Net operating income	$\$$	$\mathbf{2 0 , 0 0 0}$

CM is used first to cover fixed expenses. Any remaining CM contributes to net operating income.

The Contribution Approach

Sales, variable expenses, and contribution margin can also be expressed on a per unit basis. If Racing sells an additional bicycle \$200 additional CM will be generated to cover fixed expenses and profit.

Racing Bicjcle Company Contribution Incore Statement For the Month of lune				
Sales (500 bicycles)	Tota)		Per Unit	
	\$	250,000	\$	500
Less: Variable expenses		150,000		300
Contribution margin		100,000	\$	200
Less: Fixed expenses		80,000		
Net operating income	\$	20,000		

The Contribution Approach

Each month, RBC must generate at least
$\$ 80,000$ in total contribution margin to break-even (which is the level of sales at which profit is zero).

The Contribution Approach

If RBC sells 400 units in a month, it will be

The Contribution Approach

If RBC sells one more bike (401 bikes), net

The Contribution Approach

We do not need to prepare an income statement to estimate profits at a particular sales volume. Simply multiply the number of units sold above break-even
by the contribution margin per unit.
If Racing sells
430 bikes, its net
operating income will be $\$ 6,000$.

CVP Relationships in Equation Form

The contribution format income statement can be expressed in the following equation:

Profit $=$ (Sales - Variable expenses) - Fixed expenses

Racing Bicycle Company Contribution Income Statement For the Month of June				
	Total		Per Unit	
Sales (401 bicycles)	\$	200,500	\$	500
Less: Variable expenses		120,300		300
Contribution margin		80,200	\$	200
Less: Fixed expenses		80,000		
Net operating income	\$	200		

[^2]
CVP Relationships in Equation Form

This equation can be used to show the profit RBC earns if it sells 401. Notice, the answer of $\$ 200$ mirrors our earlier solution.
Profit = (Sales - Variable expenses) - Fixed expenses

401 units $\times \$ 300$
$\$ 200=(\$ 200,500-\$ 120,300)-\$ 80,000$

CVP Relationships in Equation Form

When a company has only one product we can further refine this equation as shown on this slide.

Profit = (Sales - Variable expenses) - Fixed expenses

Profit $=(P \times Q-V \times Q)-$ Fixed expenses

CVP Relationships in Equation Form

This equation can also be used to show the $\$ 200$ profit RBC earns if it sells 401 bikes.

Profit $=$ (Sales - Variable expenses) - Fixed expenses
Profit $=(P \times Q-V \times Q)-$ Fixed expenses

```
$200 =($500 < 401 - $300 < 401) -$80,000
```


CVP Relationships in Equation Form

It is often useful to express the simple profit equation in terms of the unit contribution margin (Unit CM) as follows:

Unit CM = Selling price per unit - Variable expenses per unit Unit CM $=\mathrm{P}-\mathrm{V}$
Profit $=(P \times Q-V \times Q)-$ Fixed expenses
Profit $=(P-V) \times Q-$ Fixed expenses
Profit $=$ Unit CM \times Q - Fixed expenses

CVP Relationships in Equation Form
Profit $=(P \times Q-V \times Q)-$ Fixed expenses
Profit $=(P-V) \times Q-$ Fixed expenses
Profit $=$ Unit $C M \times Q-$ Fixed expenses
Profit $=(\$ 500-\$ 300) \times 401-\$ 80,000$
Profit $=\$ 200 \times 401-\$ 80,000$
Profit $=\$ 80,200-\$ 80,000$
Profit $=\$ 200$
This equation can also be used to compute RBC's $\$ 200$ profit if it sells 401 bikes.

CVP Relationships in Graphic Form

The relationships among revenue, cost, profit and volume can be expressed graphically by preparing a CVP graph. Racing Bicycle developed contribution margin income statements at $0,200,400$, and 600 units sold. We will use this information to prepare the CVP graph.

	Units Sold							
	0		200		400		600	
Sales	\$	-	\$	100,000	\$	200,000	\$	300,000
Total variable expenses		-		60,000		120,000		180,000
Contribution margin		-		40,000		80,000		120,000
Fixed expenses		80,000		80,000		80,000		80,000
Net operating income (loss)	\$	$(80,000)$	\$	$(40,000)$	\$	-	\$	40,000

Preparing the CVP Graph

Preparing the CVP Graph

 total expenses (fixed and variable). Draw a line through the data point back to where the fixed expenses line intersects the dollar axis.

Preparing the CVP Graph

Preparing the CVP Graph

Preparing the CVP Graph

Learning Objective 3
Use the contribution margin ratio (CM ratio) to compute changes in contribution margin and net operating income resulting from changes in sales volume.

Contribution Margin Ratio (CM Ratio)

The CM ratio is calculated by dividing the total contribution margin by total sales.
Racing Bicycle Company
Contribution Income Statement

For the Month of June

$\$ 100,000 \div \$ 250,000=40 \%$

Contribution Margin Ratio (CM Ratio)

The contribution margin ratio at Racing Bicycle is:

$$
\text { CM Ratio }=\frac{C M \text { per unit }}{\text { SP per unit }}=\frac{\$ 200}{\$ 500}=40 \%
$$

The CM ratio can also be calculated by dividing the contribution margin per unit by the selling price per unit.

Contribution Margin Ratio (CM Ratio)

If Racing Bicycle increases sales by $\$ 50,000$, contribution margin will increase by $\$ 20,000(\$ 50,000 \times 40 \%)$.

Here is the proof:

A \$50,000 increase in sales revenue results in a \$20,000 increase in CM. $(\$ 50,000 \times 40 \%=\$ 20,000)$

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300.2,100$ cups are sold each month on average. What is the CM Ratio for Coffee Klatch?
a. 1.319
b. 0.758
c. 0.242
d. 4.139

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300.2,100$ cups are sold each month on average. What is the CM Ratio for Coffee Klatch?

Contribution Margin Ratio (CM Ratio)

The relationship between profit and the CM ratio can be expressed using the following equation:

Profit $=$ CM ratio \times Sales - Fixed expenses

If Racing Bicycle increased its sales volume to 500 bikes, what would management expect profit or net operating income to be?

Profit $=40 \% \times \$ 250,000-\$ 80,000$
Profit $=\$ 100,000-\$ 80,000$
Profit $=\$ 20,000$

Learning Objective 4

The Variable Expense Ratio

The variable expense ratio is the ratio of variable expenses to sales. It can be computed by dividing the total variable expenses by the total sales, or in a single product analysis, it can be computed by dividing the variable expenses per unit by the unit selling price.

Changes in Fixed Costs and Sales Volume

What is the profit impact if Racing

 Bicycle can increase unit sales from 500 to 540 by increasing the monthly advertising budget by $\$ 10,000$?

Changes in Fixed Costs and Sales Volume
$\$ 80,000+\$ 10,000$ advertising $=\$ 90,000$

Sales	500 units		540 units	
	\$	250,000	\$	270,000
Less: Variable expenses		150,000		162,000
Contribution margin		100,000		108,000
Less: Fixed expenses		80,000		90,000
Net operating income	\$	20,000	\$	18,000

Sales increased by $\$ 20,000$, but net operating income decreased by $\$ 2,000$.

Changes in Fixed Costs and Sales Volume
 A shortcut solution using incremental analysis

Increase in CM (40 units $\mathrm{X} \$ 200)$	$\$ 8,000$
Increase in advertising expenses	10,000
Decrease in net operating income	$\$(2,000)$

Change in Variable Costs and Sales Volume
What is the profit impact if Racing Bicycle can use higher quality raw materials, thus increasing variable costs per unit by $\$ 10$, to generate an increase in unit sales from 500 to 580 ?

Change in Variable Costs and Sales Volume

580 units $\times \$ 810$ variable cost/unit $=\$ 179,800$

Sales	500 units		580 units	
	\$	250,000		290,000
Less: Variable expenses		150,000		179,800
Contribution margin		100,000		110,200
Less: Fixed expenses		80,000		80,000
Net operating income	\$	20,000	\$	30,200

Sales increase by $\$ 40,000$, and net operating income increases by $\$ 10,200$.

Change in Fixed Cost, Sales Price and Volume

What is the profit impact if RBC: (1) cuts its selling price by $\$ 20$ per unit, (2) increases its advertising budget by $\$ 15,000$ per month, and (3) increases sales from 500 to 650 units per month?

Change in Fixed Cost, Sales Price and Volume

650 units $\times \$ 480=\$ 312,000$		
	500 units	650 units
Sales	\$ 250,000	\$ 312,000
Less: Variable expenses	150,000	195,000
Contribution margin	100,000	117,000
Less: Fixed expenses	80,000	95,000
Net operating income	\$ 20,000	\$ 22,000

Sales increase by $\$ 62,000$, fixed costs increase by
$\$ 15,000$, and net operating income increases by $\$ 2,000$.

Change in Variable Cost, Fixed Cost and Sales Volume

What is the profit impact if RBC: (1) pays a $\$ 15$ sales commission per bike sold instead of paying salespersons flat salaries that currently total $\$ 6,000$ per month, and (2) increases unit sales from 500 to 575 bikes?

Change in Variable Cost, Fixed Cost and Sales Volume

575 units $\times \$ 315=\$ 181,125$

	500 units	575 units
Sales	\$ 250,000	\$ 287,500
Less: Variable expenses	150,000	181,125
Contribution margin	100,000	106,375
Less: Fixed expenses	80,000	74,000
Net operating income	\$ 20,000	\$ 32,375

Sales increase by $\$ 37,500$, fixed expenses decrease by $\$ 6,000$. Net operating income increases by $\$ 12,375$.

Change in Regular Sales Price

If RBC has an opportunity to sell 150 bikes to a wholesaler without disturbing sales to other customers or fixed expenses, what price would it quote to the wholesaler if it wants to increase monthly profits by $\$ 3,000$?

Change in Regular Sales Price

$$
\begin{aligned}
\$ 3,000 \div 150 \text { bikes } & =\$ 20 \text { per bike } \\
\text { Variable cost per bike } & =300 \text { per bike } \\
\text { Selling price required } & =\$ 320 \text { per bike }
\end{aligned}
$$

150 bikes $\times \$ 320$ per bike
Total variable costs
Increase in net operating income

$$
\begin{aligned}
& =\$ 48,000 \\
& =\quad 45,000 \\
& =\$ 3,000
\end{aligned}
$$

Break-even Analysis

Let's use the RBC information to complete the break-even analysis.

Racing Bicycle Company Contribution Income Statement For the Month of June					
	Total		Per Unit		CM Ratio
Sales (500 bicycles)	\$	250,000	\$	500	100\%
Less: Variable expenses		150,000		300	60\%
Contribution margin		100,000	\$	200	40\%
Less: Fixed expenses		80,000			
Net operating income	\$	20,000			

Break-even Analysis

We can use any of the following methods to do break-even analysis:

1. Equation method
2. Formula method
3. Percentage method

Break-even in Unit Sales:
 Equation Method

Profits $=$ Unit $\mathbf{C M} \times \mathbf{Q}$ - Fixed expenses

Suppose RBC wants to know how many bikes must be sold to break-even (earn zero profit).
$\longrightarrow \$ 0=\$ 200 \times Q+\$ 80,000$

Profits are zero at the break-even point.

Break-even in Unit Sales:

Equation Method

$$
\begin{aligned}
& \text { Profits }=\text { Unit } C M \times Q-\text { Fixed expenses } \\
& \$ 0=\$ 200 \times Q+\$ 80,000 \\
& \$ 200 \times Q=\$ 80,000 \\
& Q=400 \text { bikes }
\end{aligned}
$$

Break-even in Unit Sales: Formula Method

Let's apply the formula method to solve for the break-even point.

$$
\begin{gathered}
\text { Unit sales to } \\
\text { break even }
\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM per unit }}
$$

Unit sales $=\frac{\$ 80,000}{\$ 200}$
Unit sales $=400$

Break-even in Dollar Sales: Equation Method

Suppose Racing Bicycle wants to compute the sales dollars required to break-even (zero profit). Let's use the equation method to solve this problem.

Profit $=$ CM ratio \times Sales - Fixed expenses

> Solve for the unknown "Sales."

Break-even in Dollar Sales: Equation Method

Profit $=$ CM ratio \times Sales - Fixed expenses

\$ $0=40 \% \times$ Sales $-\$ 80,000$
$40 \% \times$ Sales $=\mathbf{\$ 8 0 , 0 0 0}$

Sales $=\mathbf{\$ 8 0 , 0 0 0} \div 40 \%$
Sales $\mathbf{=} \mathbf{\$ 2 0 0 , 0 0 0}$

Break-even in Dollar Sales: Formula Method

Now, let's use the formula method to calculate the dollar sales at the break-even point.
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}$

Dollar sales $=\frac{\$ 80,000}{40 \%}$
Dollar sales = \$200,000

Break-even:
 The Percentage Method

Now, let's use the $3^{\text {rd }}$ method: the break-even percentage ($\mathrm{BE} \%$) method to calculate the break-even point in units as well as in sales $\$$. This method also efficiently calculates break-even for multiple products.

$$
\mathrm{BE} \%=\frac{\mathrm{BE} \text { Sales } \$}{\text { Total Sales } \$} \times 100 \%
$$

Since BE Sales $\$=\frac{\mathrm{FE}}{\mathrm{CM} \%}$

$$
\Rightarrow \mathrm{BE} \%=\frac{\frac{\mathrm{FE}}{\mathrm{CM} \%}}{\text { Total Sales } \$} \times 100 \%
$$

Since CM\% x Total Sales \$ = CM

$$
\Rightarrow \mathrm{BE} \%=\frac{\mathrm{FE}}{\mathrm{CM}} \times 100 \%
$$

© 2015 McGraw-Hill Education Garrison, Noreen, Brewer, Cheng \& Yuen

Break-even Units and Dollars: The Percentage Method

Applying the BE\% formula to the same company RBC

$$
\mathrm{BE} \%=\frac{\mathrm{FE}}{\mathrm{CM}} \times 100 \%
$$

$\mathrm{BE} \%=\frac{\$ 80,000}{\$ 100,000} \times 100 \%=\mathbf{8 0} \%$
\checkmark This means that the company requires 80% of its current sales in order to break-even.
\checkmark Currently, the company's sales are $\$ 250,000$ or 500 units.
\checkmark A BE\% of 80% means if the company sales are \$200,000 ($\$ 250,000 \times 80 \%$) or 400 units (500 units $\times 80 \%$), the company is break-even.
\checkmark These figures are consistent with both the equation and the formula methods.

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300.2,100$ cups are sold each month on average. What is the break-even sales dollars?
a. $\$ 1,300$
b. $\$ 1,715$
c. $\$ 1,788$
d. $\$ 3,129$

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the break-even sales dollars?
b. $\$ 1,715$

BE sales $\$=\frac{\text { Fixed Expense }}{\text { Contribution Margin }} \times$ Current sales $\$$

$$
=\frac{\$ 1,300}{(\$ 1.49-\$ 0.36) \times 2,100} \times(2,100 \times \$ 1.49)
$$

$$
=\$ 1,715
$$

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300.2,100$ cups are sold each month on average. What is the break-even sales in units?
a. 872 cups
b. 3,611 cups
c. 1,200 cups
d. 1,150 cups

Target Profit Analysis

We can use any of the following methods to do target profit analysis:

1. Equation method
2. Formula method
3. Percentage method

Target Profit Analysis:
 Equation Method for the Quantity required
 Profit $=$ Unit $C M \times Q$ - Fixed expenses

Our goal is to solve for the unknown "Q" which represents the quantity of units that must be sold to attain the target profit.

Target Profit Analysis:

Equation Method for the Quantity required

Suppose Racing Bicycle management wants to
 know how many bikes must be sold to earn a target profit of \$100,000.

Profit $=$ Unit $\mathbf{C M} \times \mathbf{Q}$ - Fixed expenses
\$100,000 = \$200×Q - \$80,000
$\$ 200 \times Q=\$ 100,000-\$ 80,000$
$Q=(\$ 100,000+\$ 80,000) \div \$ 200$
$Q=900$

Target Profit Analysis:
The Formula Method for the Quantity required

The formula uses the following equation.

$$
\begin{aligned}
& \text { Unit sales to attain } \\
& \text { the target profit }
\end{aligned}=\frac{\text { Target profit }+ \text { Fixed expenses }}{\text { CM per unit }}
$$

Target Profit Analysis:
 Equation Method for the Sales \$ required

Profit $=\mathbf{C M}$ ratio \times Sales - Fixed expenses

Our goal is to solve for the unknown "Sales" which represents the dollar amount of sales that must be
sold to attain the target profit.
Suppose RBC management wants to know the sales volume that must be generated to earn a target profit of \$100,000.
\$100,000 = 40\% x Sales - \$80,000
$40 \% \times$ Sales $=\$ 100,000+\$ 80,000$
Sales $=(\$ 100,000+\$ 80,000) \div 40 \%$
Sales = \$450,000

Target Profit Analysis:

Formula Method for the Sales \$ required
We can calculate the dollar sales needed to attain a target profit (net operating profit) of $\$ 100,000$ at Racing Bicycle.

Dollar sales to attain $=\underline{\text { Target profit }+ \text { Fixed expenses }}$ the target profit

CM ratio

Dollar sales $=\frac{\$ 100,000+\$ 80,000}{40 \%}$
Dollar sales = \$450,000

Target Profit Analysis:
 The Percentage Method

Modifying the BE\% formula to add target profit to FE
Target Profit $\%=\frac{\text { FE }+ \text { Target Profit }}{\text { CM }} \times 100 \%$
Target Profit $\%=\frac{\$ 80,000+\$ 100,000}{\$ 100,000} \times 100 \%=180 \%$
\checkmark This means that the company requires 180% of its current sales in order to obtain the target profit.
\checkmark Currently, the company's sales are $\$ 250,000$ or 500 units.
\checkmark A Target Profit \% of 180% means if the company sales are $\$ 450,000$ ($\$ 250,000 \times 180 \%$) or 900 units (500 units x 180%), the company has a target profit of $\$ 100,000$.
\checkmark These figures are consistent with both the equation and the formula methods.

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. Use the formula method to determine how many cups of coffee would have to be sold to attain target profits of $\$ 2,500$ per month.
a. 3,363 cups
b. 2,212 cups
c. 1,150 cups
d. 4,200 cups

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. Use the formula method to determine the sales dollars that must be generated to attain target profits of $\$ 2,500$ per month.
a. $\$ 2,550$
b. $\$ 5,011$
c. $\$ 8,458$
d. $\$ 10,555$

	$\text { Targeted sales \$ }=\frac{\text { Fixed Expense }+ \text { Targeted Profit }}{\text { Contribution Margin }} \times \text { Current sales \$ }$
Quic	$=\frac{\$ 1,300+\$ 2,500}{(\$ 1.49-\$ 0.36) \times 2,100} \times(2,100 \times \$ 1.49)$
Coffe build	$=\$ 5,011$
\$1.49 and $\$ 0.36$. The	9 and the average variable expense per cup is 6. The average fixed expense per month is $\$ 1,300$.
Use the fc that must per month	the fo Sales $\$$ must to attain month target profit$=\frac{\text { Target profit }+ \text { Fixed expenses }}{C M \text { ratio }}$
b. $\$ 5,011$	$=\frac{\$ 2,500+\$ 1,300}{(\$ 1.49-0.36) \div \$ 1.49}$
c. $\$ 8,458$ d. $\$ 10,55$	$=\frac{\$ 3,800}{0.758}$
	= \$5,011

The Margin of Safety in Dollars

The margin of safety in dollars is the excess of budgeted (or actual) sales over the break-even volume of sales.

Margin of safety in dollars = Total sales - Break-even sales
Let's look at Racing Bicycle Company and determine the margin of safety.

The Margin of Safety in Dollars

If we assume that RBC has actual sales of $\$ 250,000$, given that we have already determined the break-even sales to be $\$ 200,000$, the margin of safety is $\$ 50,000$ as shown.

The Margin of Safety Percentage

RBC's margin of safety can be expressed as 20\% of sales.

$$
(\$ 50,000 \div \$ 250,000)
$$

	Break-even sales 400 units		Actual sales 500 units	
Sales	\$	200,000	\$	250,000
Less: variable expenses		120,000		150,000
Contribution margin		80,000		100,000
Less: fixed expenses		80,000		80,000
Net operating income	\$	-	\$	20,000

The Margin of Safety

The margin of safety can be expressed in terms of the number of units sold. The margin of safety at RBC is $\$ 50,000$, and each bike sells for $\$ 500$; hence, RBC's margin of safety is 100 bikes.

$$
\begin{aligned}
& \text { Margin of } \\
& \text { Safety in units }
\end{aligned}=\frac{\$ 50,000}{\$ 500}
$$

Quick Check

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the margin of safety expressed in cups?
a. 3,250 cups
b. 950 cups
c. 1,150 cups
d. 2,100 cups

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the margin of safety expressed in cups?
b. 950 cups

Margin of safety = Total sales - Break-even sales
= 2,100 cups $-1,150$ cups
= 950 cups

Breakeven Calculation

RBC's margin of safety $=20 \%$ of sales

	Actual sales
Sales	500 units
Less: variable expenses	$\$ 250,000$
Contribution margin	150,000
Less: fixed expenses	100,000
Net operating income	$\$ 80,000$

Break-even sales of RBC = 1-20\% = 80\% of sales
= \$250,000 x 80\%
= \$200,000
= Break-even Sales on slide 75

Cost Structure and Profit Stability

Cost structure refers to the relative proportion of fixed and variable costs in an organization. Managers often have some latitude in determining their organization's cost structure.

Cost Structure and Profit Stability

There are advantages and disadvantages to high fixed cost (or low variable cost) and low fixed cost (or high variable cost) structures.

An advantage of a high fixed cost structure is that income will be higher in good years compared to companies with lower proportion of fixed costs.

A disadvantage of a high fixed cost structure is that income will be lower in bad years compared to companies with lower proportion of fixed costs.

Companies with low fixed cost structures enjoy greater stability in income across good and bad years.

Operating Leverage

Operating leverage is a measure of how sensitive net operating income is to percentage changes in sales. It is a measure, at any given level of sales, of how a percentage change in sales volume will affect profits.

$$
\text { DOL }=\text { Degree of OperatingLeverage }=\frac{\text { Contribution Margin }}{\text { Net Operating Income** }}
$$

** Profit Before Tax is a commonly used alternative to Net Operating Income in the degree of operating leverage calculation

Operating Leverage

To illustrate, let's revisit the contribution income statement for RBC.

	Actual sales	
	500 Bikes	
Sales	$\$ 250,000$	
Less: variable expenses		
Contribution margin	150,000	
Less: fixed expenses	100,000	
Net income	80,000	

Degree of
$\begin{aligned} & \text { Operating } \\ & \text { Leverage }\end{aligned}=\frac{\$ 100,000}{\$ 20,000}=5$

Operating Leverage

With an operating leverage of 5 , if RBC increases its sales by 10%, net operating income would increase by 50%.

Operating Leverage

	Actual sales (500)		Increased sales (550)	
Sales	\$	250,000	\$	275,000
Less variable expenses		150,000		165,000
Contribution margin		100,000		110,000
Less fixed expenses		80,000		80,000
Net operating income	\$	20,000	\$	30,000

10\% increase in sales from \$250,000 to \$275,000
.. . results in a 50\% increase in income from \$20,000 to \$30,000.

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the operating leverage?
a. 2.21
b. 0.45
c. 0.34
d. 2.92

Quick Check \checkmark

Quick Check \checkmark

At Coffee Klatch the average selling price of a cup of coffee is $\$ 1.49$, the average variable expense per cup is $\$ 0.36$, the average fixed expense per month is $\$ 1,300$ and an average of 2,100 cups are sold each month.
If sales increase by 20%, by how much should net operating income increase?
a. 30.0\%
b. 20.0%
c. 22.1%
d. 44.2\%

Quick Check

At Coffee Klatch the average selling price of a cup of coffee is $\$ 1.49$, the average variable expense per cup is $\$ 0.36$, the average fixed expense per month is $\$ 1,300$ and an average of 2,100 cups are sold each month.
If sales increase by 20%, by how much should net operating income increase?
a. 30.0\%
b. 20.0%
d. 44.2%

Percent increase in sales	20.0\%
\times Degree of operating leverage	2.21
Percent increase in profit	44.20\%

Verify Increase in Profit

Sales	Actual sales	Increased sales
	2,100 cups	2,520 cups
	\$ 3,129	\$ 3,755
Less: Variable expenses Contribution margin	756	907
	2,373	2,848
Less: Fixed expenses Net operating income	1,300	1,300
	\$ 1,073	1,548
$\%$ change in sales $\%$ change in net operating income		20.0\%
		44.2\%

What does higher value of Operating Leverage mean?

High Operating Leverage ratio
signals the existence of high fixed costs.
> increases risk of making loss in adverse market conditions.

- increases opportunity to make profit when higher demand exists.
, has lower margin of safety percentage (MoS\%)

$$
\mathrm{DOL} \approx \frac{1}{\mathrm{MoS} \%}
$$

Proof of Operating Leverage and Profit Movement Relationship

	Benchmark Co.	High F.C. Co.
Total Sales (Same)	\$3,200,000	\$3,200,000
Unit selling price (Same)	\$800	\$800
Unit variable costs	(\$300)	(\$150)
Unit Contribution margin	\$500	\$650
Unit sales (Same)	4,000	4,000
Contribution margin (CM)	\$2,000,000	\$2,600,000
Fixed costs	(\$1,500,000)	(\$2,100,000)
Net Operating Profit (Same) (P)	500,000	500,000
Degree of operating leverage (CM / P)	4.0	5.2
	, Cheng \& yuen	95

Proof of Operating Leverage and Profit Movement Relationship

	Benchmark Co.	High F.C. Co.
Increase in sales	12.5%	12.5%
Degree of operating leverage	$\times 4.0$	$\times 5.2$
Increase in profits	$\mathbf{5 0 \%}$	$\mathbf{6 5 \%}$
Proof:		$\$ 500$
Unit contribution margin	$\times 500$	$\$ 650$
Unit change in sales $(4,000 \times 12.5 \%)$	$\$ 250,000$	$\$ 325,000$
Change in profits	$\mathbf{5 0 \%}$	$\mathbf{6 5 \%}$
Percentage increase from the original $\$ 500,000$ profit		

Proof of Operating Leverage and MoS\% Relationship

		Benchmark Co.	High F.C. Co.
Total Sales (Same)	(S)	$\$ 3,200,000$	$\$ 3,200,000$
Contribution margin	(CM)	$\$ 2,000,000$	$\$ 2,600,000$
Fixed costs	$(\$ 1,500,000)$	$(\$ 2,100,000)$	
Net Operating Profit (Same)	(P)	500,000	500,000
		$\mathbf{4 . 0}$	$\mathbf{5 . 2}$
Degree of operating leverage (CM/P)	$\mathbf{2 , 4 0 0 , 0 0 0}$	$2,584,615$	
Break-even Sales Dollars [F/(CM/S)]	75%	80.77%	
Break-even \% (to sales)	$\mathbf{2 5 \%}$	$\mathbf{1 9 . 2 3 \%}$	
MoS\% = 1 - BE\% (see slide 77)	$\mathbf{4 . 0}$	$\mathbf{5 . 2}$	
1/MoS\% = Degree of operating leverage			

Structuring Sales Commissions

Companies generally compensate salespeople by paying them either a commission based on sales or a salary plus a sales commission.
Commissions based on sales dollars can lead to lower profits in a company.

Let's look at an example.

Structuring Sales Commissions

Pipeline Unlimited produces two types of surfboards, the XR7 and the Turbo. The XR7 sells for $\$ 100$ and generates a contribution margin per unit of $\$ 25$. The Turbo sells for $\$ 150$ and earns a contribution margin per unit of $\$ 18$.

The sales force at Pipeline Unlimited is compensated based on sales commissions.

Structuring Sales Commissions

If you were on the sales force at Pipeline, you would push hard to sell the Turbo even though the XR7 earns a higher contribution margin per unit.

To eliminate this type of conflict, commissions can be based on contribution margin rather than on selling price alone.

The Concept of Sales Mix

- Sales mix is the relative proportion in which a company's products are sold.
- Different products have different selling prices, cost structures, and contribution margins.
- When a company sells more than one product, break-even analysis becomes more complex as the following example illustrates.

Let's assume Racing Bicycle Company sells bikes and carts and that the sales mix between the two products remains the same.

Multi-Product Breakeven Analysis (The BE\% Method)

RBC's Bikes and Carts sales and profit data are as follows:

Multi-Product Breakeven Analysis (The CM Ratio Method)

Bikes comprise 45\% of RBC's total sales revenue and the carts comprise the remaining 55%. RBC provides the following information:

	Bicycle			Carts			Total		
Sales	\$	250,000	100\%	\$	300,000	100\%	\$	550,000	100.0\%
Variable expenses		150,000	60\%		135,000	45\%		285,000	51.8\%
Contribution margin		100,000	40.0\%		165,000	55\%		265,000	48.2\%
Fixed expenses								170,000	
Net operating income							\$	95,000	
Sales mix	\$	250,000	45\%	\$	300,000	55\%	\$	550,00	100\%
					$\frac{\$ 26!}{\$ 55}$	$\frac{00}{00}=$		\% (nded)
© 2015 McGraw-Hill Education			Garison, Now	en,	wer, Cheng \& Y				105

Compare the Breakeven Results calculated by the $\mathrm{BE} \%$ and CM ratio methods								
Bicycle			Carts Total				Rounding difference from the breakeven	
Breakeven Sales Mix								
The BE\% method	\$ 160,375	45\%	\$ 192,450	55\%	\$352,825	100\%	\$	3
The CM ratio method	\$ 158,714		\$ 193,983	55\%	\$352,697	100\%	\$	176
Using different methods to calculate the break-even points will result in slightly different answers due to rounding differences at different points of the calculations. In this example, the BE\% seems to provide a better estimation.								

Key Assumptions of CVP Analysis

(1) Selling price is constant.
(2) Costs are linear and can be accurately divided into variable (constant per unit) and fixed (constant in total) elements.
(3) In multiproduct companies, the sales mix is constant.
(4) In manufacturing companies, inventories do not change (units produced = units sold).

End of Chapter 4

[^0]: © 2015 McGraw-Hill Education

[^1]: © 2015 McGraw-Hill Education

[^2]: 2015 McGraw-Hill Education

